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II. PROBABILITY; CONDITIONAL EXPECTATION

1. Probability spaces.
The mathematical theory of probability can be traced to 1654, to corre-

spondence between PASCAL (1623-1662) and FERMAT (1601-1665). How-
ever, the theory remained both incomplete and non-rigorous till the 20th
century. It turns out that the Lebesgue theory of measure and integral
of Ch. I is exactly the machinery needed to construct a rigorous theory
of probability adequate for modelling reality (option pricing, etc.) for us.
This was realised by the great Russian mathematician and probabilist A.
N. KOLMOGOROV (1903-1987), whose classic book of 1933, Grundbegriffe
der Wahrscheinlichkeitsrechnung (Foundations of probability theory) inau-
gurated the modern era in probability.

Recall from your first course on probability that, to describe a random
experiment mathematically, we begin with the sample space Ω, the set of all
possible outcomes. Each point ω of Ω, or sample point, represents a possible
– random – outcome of performing the random experiment. For a set A ⊆ Ω
of points ω we want to know the probability P (A) (or Pr(A), pr(A)). We
clearly want
1. P (∅) = 0, P (Ω) = 1,
2. P (A) ≥ 0 for all A,
3. If A1, A2, . . . , An are disjoint, P (

∪n
i=1 Ai) =

∑n
i=1 P (Ai) (finite additivity),

which, as in Ch. I we will strengthen to
3*. If A1, A2 . . . (ad inf.) are disjoint,

P (
∞∪
i=1

Ai) =
∞∑
i=1

P (Ai) (countable additivity).

4. If B ⊆ A and P (A) = 0, then P (B) = 0 (completeness).
Then by 1 and 3 (with A = A1,Ω \ A = A2),

P (Ac) = P (Ω \ A) = 1− P (A).

So the class F of subsets of Ω whose probabilities P (A) are defined should
be closed under countable, disjoint unions and complements, and contain the
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empty set ∅ and the whole space Ω. That is, F should be a σ-field of subsets
of Ω. For each A ∈ F , P (A) should be defined (and satisfy 1, 2, 3∗, 4 above).
So, P : F → [0, 1] is a set-function,

P : A 7→ P (A) ∈ [0, 1] (A ∈ F).

The sets A ∈ F are called events. Finally, 4 says that all subsets of null-sets
(events) with probability zero (we will call the empty set ∅ empty, not null)
should be null-sets (completeness). A probability space, or Kolmogorov triple,
is a triple (Ω,F , P ) satisfying these Kolmogorov axioms 1,2,3*,4 above. A
probability space is a mathematical model of a random experiment.

2. Random variables.
Next, recall random variables X from your first probability course. Given

a random outcome ω, you can calculate the value X(ω) of X (a scalar – a
real number, say; similarly for vector-valued random variables, or random
vectors). So, X is a function from Ω to R, X → R,

X : ω → X(ω) (ω ∈ Ω).

Recall also that the distribution function of X is defined by

F (x), or FX(x), := P
(
{ω : X(ω) ≤ x}

)
, or P (X ≤ x), (x ∈ R).

We can only deal with functions X for which all these probabilities are de-
fined. So, for each x, we need {ω : X(ω) ≤ x} ∈ F – that is, that X is mea-
surable with respect to the σ-field F (of events), briefly, X is F -measurable.
Then, X is called a random variable [non-F -measurable X cannot be han-
dled, and so are left out]. So,
(i) a random variable X is an F -measurable function on Ω,
(ii) a function on Ω is a random variable (is measurable) iff its distribution
function is defined.
Generated σ-fields.

The smallest σ-field containing all the sets {ω : X(ω) ≤ x} for all real x
[equivalently, {X < x}, {X ≥ x}, {X > X}] is called the σ-field generated
by X, written σ(X). Thus,

X is F -measurable [is a random variable] iff σ(X) ⊆ F .

When the (random) value X(ω) is known, we know which of the events in the
σ-field generated by X have happened: these are the events {ω : X(ω) ∈ B},
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for B ∈ B, the Borel σ-field [generated by the intervals] on the line.
Interpretation. Think of σ(X) as representing what we know when we know
X, or in other words the information contained in X (or in knowledge of X).
This is reflected in Doob’s lemma (L9):

σ(X) ⊆ σ(Y ) iff X = g(Y )

for some measurable function g. For, knowing Y means we know X := g(Y )
– but not vice-versa, unless the function g is one-to-one [injective], when the
inverse function g−1 exists, and we can go back via Y = g−1(X).

3. Expectation.
As in Ch. I, a measure determines an integral. A probability measure P ,

being a special kind of measure [a measure of total mass one] determines a
special kind of integral, called an expectation.
Definition. The expectation E of a random variable X on (Ω,F , P ) is
defined by

EX :=
∫
Ω
X dP, or

∫
Ω
X(ω) dP (ω).

If X is real-valued, say, with distribution function F , recall that EX is
defined in your first course on probability by

EX :=
∫
xf(x) dx if X has a density f

or if X is discrete, taking values Xn, (n = 1, 2, . . .) with probability function
f(xn)(≥ 0), (

∑
xnf(xn) = 1),

EX :=
∑

xnf(xn).

These two formulae are the special cases (for the density and discrete cases)
of the general formula

EX :=
∫ ∞

−∞
x dF (x)

where the integral on the right is a Lebesgue-Stieltjes integral. This in turn
agrees with the definition above, since if F is the distribution function of X,∫

Ω
X dP =

∫ ∞

−∞
x dF (x)

follows by transformation of the integral (or change of variable formula), on
applying the map X : Ω → R (L7). Then X maps to the identity, x; Ω maps
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to the real line; P maps to the image measure X(P ) = P ◦X−1 = P (X−1),
which is called the (probability) distribution, or law, of X. It is a Lebesgue-
Stieltjes measure on the line; the corresponding LS function is called the
distribution function of X, F or FX . We use the same letter for the LS mea-
sure and function, whence the F as the integrator in the equation above.

Note that the P -integral on the left, and the LS-integral on the right,
are both absolute integrals (f is integrable iff |f | is integrable), as these are
measure-theoretic integrals. This explains why, when we meet expectation
in our first course on Probability as a sum or integral, the sum or integral (if
infinite) should be restricted to be absolutely convergent (correct your under-
graduate notes if it wasn’t!) Without the restriction to absolute convergence,
we lose the vitally important property of linearity of expectation.

Glossary. We now have two parallel languages, measure-theoretic and prob-
abilistic:

Measure Probability
Integral Expectation
Measurable set Event
Measurable function Random variable
almost-everywhere (a.e.) almost-surely (a.s.).

We extend this by calling a.e. convergence in the measure case a.s. con-
vergence in the probability case, and convergence in measure in the measure
case convergence in probability (in prob., or in pr.) in the probability case.
So (L9) neither of a.s. convergence or convergence in pth mean implies the
other; each implies convergence in pr., but not conversely. (That a.s. con-
vergence implies convergence in pr follows easily from Egorov’s theorem.)
Example. We show by example that convergence in pr does not imply a.s.
convergence (a fact known to F. Riesz in 1912). On the Lebesgue measure
space [0, 1] (i.e., ([0, 1],L, λ), let

sn := 1/2 + 1/3 + . . .+ 1/n (mod 1), An := [sn−1, sn], Xn := IAn .

Since the harmonic series diverges, theXn endlessly move rightwards through
the interval [0, 1], exiting right and reappearing left. So the Xn do not con-
verge anywhere, in particular are not a.s. convergent. But since Xn = 0
except on a set of probability 1/n, Xn → 0 in probability.
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