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11. Conditional expectations.

Suppose that X is a random variable, whose expectation exists (i.e.
E|X| < ∞, or X ∈ L1). Then EX, the expectation of X, is a scalar (a
number) – non-random. The expectation operator E averages out all the
randomness in X, to give its mean (a weighted average of the possible value
of X, weighted according to their probability, in the discrete case). It often
happens that we have partial information about X – for instance, we may
know the value of a random variable Y which is associated with X, i.e. car-
ries information about X. We may want to average out over the remaining
randomness. This is an expectation conditional on our partial information,
or more briefly a conditional expectation. This idea will be familiar already
from elementary courses, in two cases:
1. Discrete case, based on the formula

P (A|B) := P (A ∩B)/P (B) if P (B) > 0.

If X takes values x1, · · · , xm with probabilities f1(xi) > 0, Y takes values
y1, · · · , yn with probabilities f2(yj) > 0, (X, Y ) takes values (xi, yj) with
probabilities f(xi, yj) > 0, then
(i) f1(xi) = Σjf(xi, yj), f2(yj) = Σif(xi, yj),
(ii) P (Y = yj|X = xi) = P (X = xi, Y = yj)/P (X = xi) = f(xi, yj)/f1(xi)

= f(xi, yj)/Σjf(xi, yj).

This is the conditional distribution of Y given X = xi, written

fY |X(yj|xi) = f(xi, yj)/f1(xi) = f(xi, yj)/Σjf(xi, yj).

Its expectation is

E(Y |X = xi) = ΣjyjfY |X(yj|xi) = Σjyjf(xi, yj)/Σjf(xi, yj).

The problem here is that this approach only works when the events on which
we condition have positive probability, which only happens in the discrete
case.
2. Density case. If (X,Y ) has density f(x, y),

X has density f1(x) :=
∫ ∞

−∞
f(x, y)dy, Y has density f2(y) :=

∫ ∞

−∞
f(x, y)dx.

1



We define the conditional density of Y given X = x by the continuous ana-
logue of the discrete formula above:

fY |X(y|x) := f(x, y)/f1(x) = f(x, y)/
∫ ∞

−∞
f(x, y)dy.

Its expectation is

E(Y |X = x) =
∫ ∞

−∞
yfY |X(y|x)dy =

∫ ∞

−∞
yf(x, y)dy/

∫ ∞

−∞
f(x, y)dy.

Example: Bivariate normal distribution, N(µ1, µ2, σ
2
1, σ

2
2, ρ).

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1),

the familiar regression line of statistics (linear model). See e,g.
N. H. BINGHAM and John M. FRY: Regression: Linear Models in Statistics.
Springer Undergraduate Mathematics Series (SUMS), 2010.

The problem here is that joint densities need not exist – do not exist, in
general.

One of the great contributions of Kolmogorov’s classic book of 1933 was
the realization that measure theory – specifically, the Radon-Nikodym the-
orem – provides a way to treat conditioning in general, without making
assumptions that we are in one of the two cases – discrete case and density
case – above.

Recall that the probability triple is (Ω,A,P ). Suppose that B is a sub-σ-
field of A, B ⊂ A (recall that a σ-field represents information; the big σ-field
A represents ‘knowing everything’, the small σ-field B represents ‘knowing
something’).

Suppose that Y is a non-negative random variable whose expectation
exists: EY < ∞. The set-function

Q(B) :=
∫
B
Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B
Y dP = Σn

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure
on B. If P (B) = 0, then Q(B) = 0 also (the integral of anything over a
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null set is zero), so Q << P . By the Radon-Nikodym theorem (L7), there
exists a Radon-Nikodym derivative of Q with respect to P on B, which is
B-measurable (in the RN theorem of L7, we had ‘measurable’, meaning ‘A-
measurable; here replace A by B). Following Kolmogorov (1933), we call
this Radon-Nikodym derivative the conditional expectation of Y given (or
conditional on) B, E(Y |B): this is B-measurable, integrable, and satisfies∫

B
Y dP =

∫
B
E(Y |B)⌈P ∀B ∈ B. (∗)

In the general case, where Y is a random variable whose expectation exists
(E|Y | < ∞) but which can take values of both signs, decompose Y as

Y = Y+ − Y−

and define E(Y |B) by linearity as

E(Y |B) := E(Y+|B)− E(Y−|B).

Suppose now that B is the σ-field generated by a random variable X: B
= σ(X) (so B represents the information contained in X, or what we know
when we know X). Then E(Y |B) = E(Y |σ(X)), which is written more
simply as E(Y |X). Its defining property is∫

B
Y dP =

∫
B E(Y |X)dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we
write
E(Y |σ(X1, · · · , Xn) as E(Y |X1, · · · , Xn):∫

B
Y dP =

∫
B
E(Y |X1, · · · , Xn)dP ∀B ∈ σ(X1, · · · , Xn).

Note. 1. To check that something is a conditional expectation: we have to
check that it integrates the right way over the right sets [i.e., as in (*)].
2. From (*): if two things integrate the same way over all sets B ∈ B, they
have the same conditional expectation given B.
3. For notational convenience, we shall pass between E(Y |B) and EBY at
will.
4. The conditional expectation thus defined coincides with any we may have
already encountered - in regression or multivariate analysis, for example.
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However, this may not be immediately obvious. The conditional expectation
defined above – via σ-fields and the Radon-Nikodym theorem – is rightly
called by Williams ([W], p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious
definitions, it proves its worth in action: see below for properties of con-
ditional expectations, and for its use in studying stochastic processes, par-
ticularly martingales [which are defined in terms of conditional expectations].

12. Properties of conditional expectations.

1. B = {∅,Ω}. Here B is the smallest possible σ-field (any σ-field of subsets
of Ω contains ∅ and Ω), and represents ‘knowing nothing’.

E(Y |{∅,Ω}) = EY.

Proof. We have to check (*) for B = ∅ and B = Ω. For B = ∅ both sides are
zero; for B = Ω both sides are EY . //

2. B = A. Here B is the largest possible σ-field, and represents ‘knowing
everything’.

E(Y |A) = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ A. The only integrand that
integrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.

Note. When we condition on A (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out,
so taking the conditional expectation (averaging out remaining randomness)
has no effect, and leaves Y unaltered.
3. If Y is B-measurable, E(Y |B) = Y P -a.s.

Proof. Recall that Y is always A-measurable (this is the definition of Y being
a random variable). For B ⊂ A, Y may not be B-measurable, but if it is, the
proof above applies with B in place of A.

Note. If Y is B-measurable, when we are given B (that is, when we con-
dition on it), we know Y . That makes Y effectively a constant, and when we
take the expectation of a constant, we get the same constant.

4


