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4 (Pull-out property). If Y is B-measurable, E(Y Z|B) = Y E(Z|B) P-as.
Proof. We need to show
/ YZdP:Y/ ZdP (B e B).
B B

If Y = Ip is the indicator of a set B’ € B, this holds, as both sides are
Jpnp ZdP. By linearity, it holds for simple B-measurable functions. It then
extends to non-negative integrable B-measurable functions by approximation
as usual, and to the general case by taking positive and negative parts. //

Note. Williams calls this property ‘taking out what is known’. To remem-
ber it: if Y is B-measurable, then given B we know Y, so Y is effectively a
constant, so can be taken out through the integration signs.

5 (Tower property). If C C B, E[E(Y|B) |C] = E[Y|C] a.s.

Proof. EcEgY is C-measurable, and for C' € C C B,

/ EelEsY]dP = / EsYdP  (definition of Ec as C € C)
C C

= / YdP (definition of Ep as C' € B).
c

So E¢[EgY| satisfies the defining relation for E¢Y . Being also C-measurable,
it is EcY (a.s.). //

5" (Tower property). If C C B, E[E(Y|C) |B] = E[Y|C] a.s.

Proof. E]Y|C] is C-measurable, so B-measurable as C C B, so E[.|B] has no
effect, by 3. //

Corollary. E[E(Y|C) |C] = E[Y|C] a.s.

Thus the operation E[.|C] is linear and idempotent (doing it twice is the same
as doing it once), so is a projection. So we can use what we know about pro-
jections, from Linear Algebra, Functional Analysis etc.



Note. The tower property (in either form) is also known as the iterated condi-
tional expectations property or coarse-averaging property. When conditioning
on two o-fields, one larger (finer), one smaller (coarser), the coarser rubs out
the effect of the finer, either way round.

6. Role of independence. If Y is independent of B,
E(Y|B) = EY a.s.
Proof. We require
E[Y]P(B) :E[Y]/BdP:/BYdP (B € B).
If Y = I, is an indicator, 4, I are independent, so
P(AN B) = Ellang| = Ella.Ip] = E[14].E[Ip] = P(A)P(B),

by the Multiplication Theorem (L11). This gives the result for indicators;
we extend to simple functions by linearity, and thence to the non-negative
integrable case and the general case as usual. //

7. Conditional Mean Formula.
E[EY|B)=EY P —a.s.
Proof. Take C = {,Q} in 5 and use 1. //

Example. Check this for the bivariate normal distribution considered above.

8. Conditional Variance Formula.
varY = Exvar(Y|X) +varx E(Y]X).
Recall varX := E[(X — EX)?|. Expanding the square,
varX = E[X?—2X.(EX)+(EX)? = BE(X*)—2(EX)(EX)+(EX)* = E(X?)—(EX)*.

Conditional variances can be defined in the same way. Recall that E(Y]X) is
constant when X is known (= z, say), so can be taken outside an expectation
over X, Ex say. Then

var(Y|X) := B(Y?X) — [E(Y|X)].
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Take expectations of both sides over X:
Exvar(Y|X) = Ex[E(Y?X)] — Ex[E(Y|X)]%

Now Ex[E(Y? X)] = E(Y?), by the Conditional Mean Formula, so the right
is, adding and subtracting (FY)?,

{E(Y?) — (BY)*} = {Ex[E(Y|X)]* — (EY)*}.

The first term is varY, by above. Since E(Y|X) has Ex-mean EY, the
second term is vary E(Y|X), the variance (over X)) of the random variable
E(Y|X (random because X is). Combining, the result follows.
Interpretation. varY = total variability in Y,
Exvar(Y|X) = variability in Y not accounted for by knowledge of X,
varx E(Y|X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

YIX=uzis N(ug—l—p?(x—,ul),og(l—ﬁ)), varY = o3,
1

g9 o
BYIX =a) = pptp =), B(YIX)=p2tp (X = pu),
which has variance (poy/0o1)*varX = (poy/o1)*0? = p?o3,
var(Y|X = x) = o3 for all ,var(Y|X) = 03(1—p?), Exvar(Y|X) = 05(1—p?).

Corollary. E(Y|X) has the same mean as Y and smaller variance (if any-
thing).

Proof. From the Conditional Mean Formula, E[E(Y|X)] = EY. Since
var(Y|X) > 0, Exvar(Y|X) > 0, so varE[Y|X] < varY from the Con-
ditional Variance Formula.

This result has important applications in estimation theory. Suppose we
are to estimate a parameter 0, and are considering a statistic X as a possible
estimator (or basis for an estimator) of . We would naturally want X to
contain all the information on 6 contained within the entire sample. What
(if anything) does this mean in precise terms? The answer lies in the concept
of sufficiency (‘data reduction’) — one of the most important contributions to
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statistics of the great English statistician R. A. (Sir Ronald) Fisher (1880-
1962). In the language of sufficiency, the Conditional Variance Formula is
seen as (essentially) the Rao-Blackwell Theorem, a key result in the area (see
the index in your favourite Statistics book if you want more here).

13. Filtrations.

The Kolmogorov triples (2, F, P), and the Kolmogorov conditional ex-
pectations F(X|B), give us all the machinery we need to handle static situ-
ations involving randomness. To handle dynamic situations, involving ran-
domness which unfolds with time — the essence of Stochastic Processes — we
need further structure.

Suppose time evolves in integer steps, t = 0, 1,2, -+ (so we start at time
t = 0; we postpone continuous time). We suppose, for simplicity, that infor-
mation is never lost (or forgotten): thus, as time increases we learn more.
Recall that o-fields represent information or knowledge. We thus need an
increasing sequence of o-fields {F,, : n=10,1,2,-- -},

Fn C Fota (n=0,1,2,---),

where F,, represents what we know at time n. As usual, we take the o-fields
to be complete, i.e., to contain all subsets of null sets as null sets. Thus F
represents the initial information (if there is none, Fy = {0, Q}, the trivial
o-field). On the other hand,

Foo = iMoo Fn

represents all we ever will know (the ‘Doomsday o-field’). Often, F., will be
F, but not always; see e.g. [W], S15.8 for an interesting example.

Such a family {F, : n = 0,1,2,---} is called a filtration; a probability
space endowed with such a filtration, {Q,{F,}, F,P} is called a filtered
probability space. (These definitions are due to P. A. MEYER (1934-2003) of
Strasbourg; Meyer and the Strasbourg (and more generally, French) school
of probabilists have been responsible for the ‘general theory of [stochastic]
processes’, and for much of the progress in stochastic integration, since the
1960s). Since the filtration is so basic to the definition of a stochastic process,
the more modern term for a filtered probability space is a stochastic basis.



