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4 (Pull-out property). If Y is B-measurable, E(Y Z|B) = Y E(Z|B) P -a.s.

Proof. We need to show∫
B
Y ZdP = Y

∫
B
ZdP (B ∈ B).

If Y = IB′ is the indicator of a set B′ ∈ B, this holds, as both sides are∫
B∩B′ ZdP . By linearity, it holds for simple B-measurable functions. It then
extends to non-negative integrable B-measurable functions by approximation
as usual, and to the general case by taking positive and negative parts. //

Note. Williams calls this property ‘taking out what is known’. To remem-
ber it: if Y is B-measurable, then given B we know Y , so Y is effectively a
constant, so can be taken out through the integration signs.

5 (Tower property). If C ⊂ B, E[E(Y |B) |C] = E[Y |C] a.s.

Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫
C
EC[EBY ]dP =

∫
C
EBY dP (definition of EC as C ∈ C)

=
∫
C
Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //

5’ (Tower property). If C ⊂ B, E[E(Y |C) |B] = E[Y |C] a.s.

Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect, by 3. //

Corollary. E[E(Y |C) |C] = E[Y |C] a.s.
Thus the operation E[.|C] is linear and idempotent (doing it twice is the same
as doing it once), so is a projection. So we can use what we know about pro-
jections, from Linear Algebra, Functional Analysis etc.
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Note. The tower property (in either form) is also known as the iterated condi-
tional expectations property or coarse-averaging property. When conditioning
on two σ-fields, one larger (finer), one smaller (coarser), the coarser rubs out
the effect of the finer, either way round.

6. Role of independence. If Y is independent of B,

E(Y |B) = EY a.s.

Proof. We require

E[Y ]P (B) = E[Y ]
∫
B
dP =

∫
B
Y dP (B ∈ B).

If Y = IA is an indicator, IA, IB are independent, so

P (A ∩B) = E[IA∩B] = E[IA.IB] = E[IA].E[IB] = P (A)P (B),

by the Multiplication Theorem (L11). This gives the result for indicators;
we extend to simple functions by linearity, and thence to the non-negative
integrable case and the general case as usual. //

7. Conditional Mean Formula.

E[E(Y |B)] = EY P − a.s.

Proof. Take C = {∅,Ω} in 5 and use 1. //

Example. Check this for the bivariate normal distribution considered above.

8. Conditional Variance Formula.

varY = EXvar(Y |X) + varXE(Y |X).

Recall varX := E[(X − EX)2]. Expanding the square,

varX = E[X2−2X.(EX)+(EX)2] = E(X2)−2(EX)(EX)+(EX)2 = E(X2)−(EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is
constant when X is known (= x, say), so can be taken outside an expectation
over X, EX say. Then

var(Y |X) := E(Y 2|X)− [E(Y |X)]2.
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Take expectations of both sides over X:

EXvar(Y |X) = EX [E(Y 2|X)]− EX [E(Y |X)]2.

Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY )2,

{E(Y 2)− (EY )2} − {EX [E(Y |X)]2 − (EY )2}.

The first term is varY , by above. Since E(Y |X) has EX-mean EY , the
second term is varXE(Y |X), the variance (over X) of the random variable
E(Y |X (random because X is). Combining, the result follows.
Interpretation. varY = total variability in Y ,

EXvar(Y |X) = variability in Y not accounted for by knowledge of X,
varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example: the bivariate normal.

Y |X = x is N(µ2 + ρ
σ2

σ1

(x− µ1), σ
2
2(1− ρ2)), varY = σ2

2,

E(Y |X = x) = µ2 + ρ
σ2

σ1

(x− µ1), E(Y |X) = µ2 + ρ
σ2

σ1

(X − µ1),

which has variance (ρσ2/σ1)
2varX = (ρσ2/σ1)

2σ2
1 = ρ2σ2

2,

var(Y |X = x) = σ2
2 for all x, var(Y |X) = σ2

2(1−ρ2), EXvar(Y |X) = σ2
2(1−ρ2).

Corollary. E(Y |X) has the same mean as Y and smaller variance (if any-
thing).

Proof. From the Conditional Mean Formula, E[E(Y |X)] = EY . Since
var(Y |X) ≥ 0, EXvar(Y |X) ≥ 0, so varE[Y |X] ≤ varY from the Con-
ditional Variance Formula.

This result has important applications in estimation theory. Suppose we
are to estimate a parameter θ, and are considering a statistic X as a possible
estimator (or basis for an estimator) of θ. We would naturally want X to
contain all the information on θ contained within the entire sample. What
(if anything) does this mean in precise terms? The answer lies in the concept
of sufficiency (‘data reduction’) – one of the most important contributions to
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statistics of the great English statistician R. A. (Sir Ronald) Fisher (1880-
1962). In the language of sufficiency, the Conditional Variance Formula is
seen as (essentially) the Rao-Blackwell Theorem, a key result in the area (see
the index in your favourite Statistics book if you want more here).

13. Filtrations.

The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional ex-
pectations E(X|B), give us all the machinery we need to handle static situ-
ations involving randomness. To handle dynamic situations, involving ran-
domness which unfolds with time – the essence of Stochastic Processes – we
need further structure.

Suppose time evolves in integer steps, t = 0, 1, 2, · · · (so we start at time
t = 0; we postpone continuous time). We suppose, for simplicity, that infor-
mation is never lost (or forgotten): thus, as time increases we learn more.
Recall that σ-fields represent information or knowledge. We thus need an
increasing sequence of σ-fields {Fn : n = 0, 1, 2, · · ·},

Fn ⊂ Fn+1 (n = 0, 1, 2, · · ·),

where Fn represents what we know at time n. As usual, we take the σ-fields
to be complete, i.e., to contain all subsets of null sets as null sets. Thus F0

represents the initial information (if there is none, F0 = {∅,Ω}, the trivial
σ-field). On the other hand,

F∞ := limn→∞Fn

represents all we ever will know (the ‘Doomsday σ-field’). Often, F∞ will be
F , but not always; see e.g. [W], S15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probability
space endowed with such a filtration, {Ω, {Fn}, F ,P} is called a filtered
probability space. (These definitions are due to P. A. MEYER (1934-2003) of
Strasbourg; Meyer and the Strasbourg (and more generally, French) school
of probabilists have been responsible for the ‘general theory of [stochastic]
processes’, and for much of the progress in stochastic integration, since the
1960s). Since the filtration is so basic to the definition of a stochastic process,
the more modern term for a filtered probability space is a stochastic basis.
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