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III. Stochastic processes; Martingales; Brownian motion

1. Filtrations; Finite-dimensional Distributions
We take a stochastic basis (II.16) (Ω, {Ft, }, F , P ) (or filtered probability

space), which following Meyer we assume satisfies the usual conditions (con-
ditions habituelles):
a. completeness: each Ft contains all P -null sets of F ;
b. the filtration is right-continuous, i.e. Ft = Ft+ := ∩s>tFs.
A stochastic process X = (X(t))t≥0 is a family of random variables defined on
a stochastic basis. Call X adapted if X(t) ∈ Ft (i.e. X(t) is Ft-measurable)
for each t: thus X(t) is known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time points in [0,∞), (X(t1), . . . , X(tn)) is
a random n-vector, with a distribution, µ(t1, . . . , tn) say. The class of all such
distributions as {t1, . . . , tn} ranges over all finite subsets of [0,∞) is called
the class of all finite-dimensional distributions of X. These satisfy certain
obvious consistency conditions:
DK1. deletion of one point ti can be obtained by ‘integrating out the un-
wanted variable’, as usual when passing from joint to marginal distributions;
DK2. permutation of the times ti permutes the arguments of the measure
µ(t1, . . . , tn) on Rn in the same way.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the Daniell-Kolmogorov theorem). This classical result (due
to P.J. Daniell in 1918 and A.N. Kolmogorov in 1933) is the basic existence
theorem for stochastic processes. For the proof, see e.g. [K].

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realize X = (X(t, ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → X(t, ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case
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of Brownian motion, for example, and its relatives. Sometimes we need to
allow our random function X(t, ω) to have jumps. It is then customary, and
convenient, to require X(t) to be right-continuous with left limits (RCLL),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for
instance, for the Poisson process and its relatives (see below).

General results on realisability – whether or not it is possible to realize, or
obtain, a process so as to have its paths in a particular function space – are
known; see for example the Kolmogorov-Ĉentsov theorem. For our purposes,
however, it is usually better to construct the processes we need directly on
the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on such re-
sults (separability, measurability, versions, regularization etc.) see e.g. [D].

There are several ways to define ’sameness’ of two processes X and Y .
We say
(i) X and Y have the same finite-dimensional distributions if, for any integer
n and {t1, · · · , tn} a finite set of time points in [0,∞), the random vectors
(X(t1), . . . , X(tn)) and (Y (t1), . . . , Y (tn)) have the same distribution;
(ii) Y is a modification of X if, for every t ≥ 0, we have P (Xt = Yt) = 1;
(iii) X and Y are indistinguishable if almost all their sample paths agree:

P [Xt = Yt; ∀0 ≤ t < ∞] = 1.

Indistinguishable processes are modifications of each other; the converse is
not true in general, but is true for processes with right-continuous paths.
This will cover the processes we encounter in this course.

A process is called progressively measurable if the map (t, ω) 7→ Xt(ω)
is measurable, for each t ≥ 0. Progressive measurability holds for adapted
processes with right-continuous (or left-continuous) paths – and so always in
the generality in which we work.

A random variable τ : Ω → [0,∞] is a stopping time if {τ ≤ t} ∈ Ft for
all t ≥ 0. If {τ < t} ∈ Ft for all t, τ is called an optional time. For right-
continuous filtrations (as here, under the usual conditions) the concepts of
stopping and optional times are equivalent.

For a set A ⊂ Rd and a stochastic process X, we can define the hitting
time of A for X as

τA := inf{t > 0 : Xt ∈ A}.
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For our usual situation (RCLL processes and Borel sets) hitting times are
stopping times.

We will also need the stopping time σ-algebra Fτ defined as

Fτ = {A ∈ F : A ∩ {τ ≤ t} ∈ Ft.

Intuitively, Fτ represents the events known at time τ .
The continuous-time theory is technically much harder than the discrete-

time theory, for two reasons:
1. questions of path-regularity arise in continuous time but not in discrete
time;
2. uncountable operations (such as taking the supremum over an interval)
arise in continuous time. But measure theory is constructed using countable
operations: uncountable operations risk losing measurability.
This is why discrete and continuous time are often treated separately.

2. Martingales: discrete time.
We refer for a fuller account to [W]. The classic exposition is Ch. VII in

Doob’s book [D] of 1953.
Definition. A process X = (Xn) in discrete time is called a martingale (mg)
relative to ({Fn}, P ) if
(i) X is adapted (to {Fn});
(ii) E|Xn| < ∞ for all n;
(iii) [Xn|Fn−1] = Xn−1 P -a.s.
X is a supermartingale (supermg) if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale (submg) if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Martingales have a useful interpretation in terms of dynamic games: a mg
is ‘constant on average’, and models a fair game; a supermg is ‘decreasing
on average’, and models an unfavourable game; a submg is ‘increasing on
average’, and models a favourable game.
Note. 1. Mgs have many connections with harmonic functions in probabilistic
potential theory. Supermgs correspond to superharmonic functions, submgs
to subharmonic functions.
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2. X is a submg (supermg) iff −X is a supermg (submg); X is a mg if and
only if it is both a submg and a supermg.
3. (Xn) is a mg iff (Xn −X0) is a mg. So w.l.o.g. take X0 = 0 if convenient.
4. If X is a martingale, then for m < n using the iterated conditional
expectation and the martingale property repeatedly (all equalities are in the
a.s.-sense)

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] = E[Xn−1|Fm] = . . . = E[Xm|Fm] = Xm,

and similarly for submgs, supermgs.
The word ‘martingale’ is taken from an article of harness, to control a

horse’s head. The word also means a system of gambling which consists in
doubling the stake when losing in order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
Examples.
1. Mean zero random walk: Sn =

∑
Xi, withXi independent with E(Xi) = 0

is a mg (submg: positive mean; supermg: negative mean).
2. Stock prices: Sn = S0ζ1 · · · ζn with ζi independent positive r.vs with finite
first moment.
3. Accumulating data about a random variable ([W], pp. 96, 166–167). If
ξ ∈ L1(Ω,F ,P), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ
based on knowledge at time n), then using iterated conditional expectations

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1] = E[ξ|Fn−1] = Mn−1,

so (Mn) is a martingale – indeed, a ‘nice’ mg; see below.
Stopping Times and Optional Stopping

Recall that τ taking values in {0, 1, 2, . . . ; +∞} is a stopping time if

{τ ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn ∀ n ≤ ∞.

From {τ = n} = {τ ≤ n} \ {τ ≤ n− 1} and {τ ≤ n} =
∪

k≤n{τ = k}, we see
the equivalent characterization

{τ = n} ∈ Fn ∀ n ≤ ∞.

Call a stopping time τ bounded if there is a constant K such that P (τ ≤
K) = 1. (Since τ(ω) ≤ K for some constant K and all ω ∈ Ω \ N with
P (N) = 0 all identities hold true except on a null set, i.e. a.s.)
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Example. Suppose (Xn) is an adapted process and we are interested in the
time of first entry of X into a Borel set B (e.g. B = [c,∞)):

τ = inf{n ≥ 0 : Xn ∈ B}.

Now {τ ≤ n} =
∪

k≤n{Xk ∈ B} ∈ Fn and τ = ∞ if X never enters B. Thus
τ is a stopping time. Intuitively, think of τ as a time at which you decide
to quit a gambling game: whether or not you quit at time n depends only
on the history up to and including time n – NOT the future. Thus stopping
times model gambling and other situations where there is no foreknowledge,
or prescience of the future; in particular, in the financial context, where there
is no insider trading. Furthermore since a gambler cannot cheat the system
the expectation of his hypothetical fortune (playing with unit stake) should
equal his initial fortune.

Theorem (Doob’s Stopping-time Principle). Let τ be a bounded stop-
ping time and X = (Xn) a martingale. Then Xτ is integrable, and

E(Xτ ) = E(X0).

Proof. Assume τ(ω) ≤ K for all ω (K integer), and write

Xτ(ω)(ω) =
∞∑
k=0

Xk(ω)I(τ(ω) = k) =
K∑
k=0

Xk(ω)I(τ(ω) = k).

Then

E(Xτ ) = E[
K∑
k=0

XkI(τ = k)] (by the decomposition above)

=
K∑
k=0

E[XkI(τ = k)] (linearity of E)

=
∑K

k=0 E[E(XK |Fk)I(τ = k)] (X a mg, {τ = k} ∈ Fk )

=
K∑
k=0

E[XKI(τ = k)] (defn. of conditional expectation)

= E[XK

K∑
k=0

I(τ = k)] (linearity of E)

= E[XK ] (the indicators sum to 1)

= E[X0] (X a mg) //.
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The stopping time principle holds also true if X = (Xn) is a supermg;
then the conclusion is

EXτ ≤ EX0.

Also, alternative conditions such as
(i) X = (Xn) is bounded (|Xn|(ω) ≤ L for some L and all n, ω);
(ii) Eτ < ∞ and (Xn−Xn−1) is bounded; suffice for the proof of the stopping
time principle.

The stopping time principle is important in many areas, such as sequential
analysis in statistics.

We now wish to create the concept of the σ-algebra of events observable
up to a stopping time τ , in analogy to the σ-algebra Fn which represents the
events observable up to time n.
Definition. For τ a stopping time, the stopping time σ−algebra Fτ is

Fτ := {A ∈ F : A ∩ {τ ≤ n} ∈ Fn, for all n}.

Proposition. For τ a stopping time, Fτ is a σ−algebra.

Proof. Clearly Ω, ∅ are in Fτ . Also for A ∈ Fτ we find

Ac ∩ {τ ≤ n} = {τ ≤ n} \ (A ∩ {τ ≤ n}) ∈ Fn,

thus Ac ∈ Fτ . Finally, for a family Ai ∈ Fτ , i = 1, 2, . . . we have( ∞∪
i=1

Ai

)
∩ {τ ≤ n} =

∞∪
i=1

(Ai ∩ {τ ≤ n}) ∈ Fn,

showing
∪∞

i=1 Ai ∈ Fτ . //

One can show similarly that for σ, τ stopping times with σ ≤ τ , Fσ ⊆ Fτ .
Similarly, for any adapted sequence of random variables X = (Xn) and a.s.
finite stopping time τ , define

Xτ :=
∞∑
n=0

XnI(τ = n).

Then Xτ is Fτ -measurable.
We now give an important extension of the Stopping-Time Principle.
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Theorem (Doob’s Optional-Sampling Theorem, OST. Let X = (Xn)
be a mg and σ, τ be bounded stopping times with σ ≤ τ . Then

E [Xτ |Fσ] = Xσ, and so E(Xτ ) = E(Xσ).

Proof. First observe that Xτ and Xσ are integrable (use the sum representa-
tion and the fact that τ is bounded by an integerK) andXσ is Fσ-measurable
by above. So it only remains to prove that

E(IAXτ ) = E(IAXσ) ∀A ∈ Fσ.

For any such fixed A ∈ Fσ, define ρ by

ρ(ω) = σ(ω)IA(ω) + τ(ω)IAc(ω).

Since
{ρ ≤ n} = (A ∩ {σ ≤ n}) ∪ (Ac ∩ {τ ≤ n}) ∈ Fn

ρ is a stopping time, and from ρ ≤ τ we see that ρ is bounded. So the STP
implies E(Xρ) = E(X0) = E(Xτ ). But

E(Xρ) = E (XσIA +XτIAc) , E(Xτ ) = E (XτIA +XτIAc) .

So subtracting yields the result. //

Write Xτ = (Xτ
n) for the sequence X = (Xn) stopped at time τ , where

we define Xτ
n(ω) := Xτ(ω)∧n(ω). One can show

(i) If τ is a stopping time and X is adapted, then so is Xτ .
(ii) If τ is a stopping time and X is a mg (supermg, submg), then so is Xτ .
Examples and Applications.
1. Simple Random Walk. Recall the simple random walk: Sn :=

∑n
k=1 Xk,

where the Xn are independent tosses of a fair coin, taking values ±1 with
equal probability 1/2. Suppose we decide to bet until our net gain is first
+1, then quit. Let τ be the time we quit; τ is a stopping time. The stopping
time τ has been analyzed in detail (see e.g. [GS], 5.3, or Ex. 3.4). From this:
(i) τ < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) Eτ = +∞: the mean waiting-time for this is infinity. Hence also:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet until you get ahead (which happens eventually, by (i)), then
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quit. However, as a gambling strategy, this is hopelessly impractical: because
of (ii), you need unlimited time, and because of (iii), you need unlimited cap-
ital – neither of which is realistic.

Notice that the Stopping-time Principle fails here: we start at zero, so
S0 = 0, ES0 = 0; but Sτ = 1, so ESτ = 1. This example shows two things:
1. Conditions are indeed needed here, or the conclusion may fail (none of the
conditions in STP or the alternatives given are satisfied in this example).
2. Any practical gambling (or trading) strategy needs to have some integra-
bility or boundedness restrictions to eliminate such theoretically possible but
practically ridiculous cases.

Theorem (Doob Decomposition). Let X = (Xn) be an adapted process with
each Xn ∈ L∞. Then X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n

with M a martingale null at zero, A a predictable process null at zero. If
also X is a submartingale, A is increasing: An ≤ An+1 for all n, a.s.

Proof. If X has a Doob decomposition as above,

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An − An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is
An − An−1, since An (and An−1) is Fn−1-measurable by predictability. So

E[Xn −Xn−1|Fn−1] = An − An−1,

and summation gives

An =
n∑

k=1

E[Xk −Xk−1|Fk−1], a.s.

So set A0 = 0 and use this formula to define (An), clearly predictable. We
then use the equation in the Theorem to define (Mn), then a martingale,
giving the Doob decomposition. To see uniqueness, assume two decomposi-
tions, i.e. Xn = X0 +Mn +An = X0 + M̃n + Ãn, then Mn − M̃n = An − Ãn.
Thus the martingale Mn − M̃n is predictable and so must be constant a.s.

If X is a submg, the LHS of the Doob decomposition is ≥ 0, so the RHS
is ≥ 0, i.e. (An) is increasing. //
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