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Lecture 18. 18.11.2010

3. Martingale Convergence and Uniform Integrability
Martingale transforms (Burkholder).
If X =(X,) is a mg [submg, supermg], C' = (C,,) is predictable, write

n

(C L4 X)n = ch(Xk - qu)
1

(C o N is the martingale [submg, supermg] transform of X by C). Then
(i) if C' is bounded and non-negative and X is a submg [supermg], C' X is
a submg [supermg] null at 0;
(ii) if C' is bounded and X is a mg, C' @ X is a mg null at 0.
Proof. As C'is bounded and X is integrable, C' @ X is integrable; it is null at
0 (empty sum is 0). As C'is predictable, C,, is F,,_j-measurable, so

EKC L X)n - (C L X)n71|fn71] = E[Cn(Xn - anl‘fnfl] = CnE[Xn - anllfnfl]a

taking out what is known. This is > 0 in case (i) with C' > 0 and X a submyg,
and 0 in case (ii) with X a mg. //
Upcrossings.

For a process X and interval [a, b], define stopping times oy, 7 by o1 :=
min{n : X,, < a}, i := min{n > oy : X,, > b}, and inductively o; :=
min{n > 71 : X,, < a}, 7 = min{n > o : X,, > b}. Call [0}, 7] an
upcrossing of [a,b] by X, and write U, := U,([a,b], X) for the number of
such upcrossings by time n.

Upcrossing Inequality (Doob). If X is a submg,
EU,([a,b], X) < E[(X, —a)"]/(b— a).

Proof. As (X — a)t is a submg by Q2 (iii) and upcrossings of [a,b] by X
correspond to upcrossings of [0,b — a] by (X — a)*, we may (by passing to
(X —a)t) take X >0, a =0. Write

V, = Zl(ok<n§7k).

k>1

Then V is predictable (this comes from the ”<” above — we know at time
n — 1 whether the kth upcrossing has begun). So 1 — V is predictable. So
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by above the transform (1 — V') @ X is a submg. So
E[(1-V)eX),]>E[(1-V)eX)y=0: E[(V e X),] < E[X,].

Each completed upcrossing contributes at least b to the sum in (V o X),, =
S V(X — Xk—1), and the contribution of the last (possibly uncompleted)
upcrossing is > 0, so

(VeX),>bU,.
Combining, bU,, < E[(V e X),] < E[X,]: EU, < E[X,]/b. Reverting to the
original notation gives the result. //

(Sub-)Martingale Convergence Theorem (Doob). An L;-bounded
submg X = (X,,) (ie. E|X,| < K for some K and all n) is a.s. conver-
gent.

Proof. For a < b rational, the expected number EU,, of upcrossings of [a, b]
up to time n is < (K + |a|)/(b — a) < oo, for each n. As U, increases in n,
monotone convergence gives E[supU,] < co. So U := supU, < oo a.s. If
X, = liminfX,,, X* := limsupX,,, {X, < X*} = Ugp{X\s < a < b < X*}
(a < brational). Each such set is null (or U would be infinite). So their union
is null, i.e. X, = X* a.s.: X is a.s. convergent (its limit X, may be infinite).
But E|X«| = Elim(inf)|X,|] < liminfE[|X,]|] (by Fatou), < K < co. So
| X | < 00 as., and X,, = X finite, a.s. //

Corollary (Doob). A non-negative supermg X, is a.s. convergent.

Proof. As X, is a supermg, FX,, decreases. As X > 0, E[X,] > 0. So
E[|X,|] = E[X,] is decreasing and bounded below, so (convergent and)
bounded: X, is Li-bounded. So the submg —X,, is Li-bounded, so a.s.
convergent by Doob’s Theorem, so X, is a.s. convergent.

Uniform Integrability. Call X,, uniformly integrable (UI) if

supn/ | X,|dP |0 (a1 o0).
{|Xn|>a}

Note that:
(i) If (X,,) are Ul then each X, is integrable. For,

E|X,| = / X, |dP +/ X, |dP < a+ o(1) < oo
{IXn|<a} {IXn|>a}
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(ii) If each | X,| <Y € Ly, then (X,,) is UL
(iii) If sup, | X,| € L1, then (X,,) is UL as then

sw, [ |XulaP < (sup | Xi[)dP = 0 (a — o),
{IXn|>a}

N {IXn|>a}

by dominated convergence.
The next result extends Fatou’s Lemma and dominated convergence.

Theorem. For (X,,) UL,
(i) Elliminf X, <liminf F[X,] < limsup E[X,| < Ellimsup X,].
(ii) If X,, — X a.s. or in prob., then X € L, and E[X,] — E[X].

Proof. (i) For ¢ > 0,

E[X,] = / X,dP = / X, dP + / X, dP.
{Xn<—c} {Xn>—c}

Choose € > 0. By UI, we can take ¢ so large that each first term on RHS has
modulus < e. As X, I(X,, > —c) > —¢, integrable, Fatou’s Lemma gives

lim inf / X, dP > / liminf X, [(X, > —¢)dP,
(Xa>—c}

As X, I(X, > —c) > X,,, RHS > [liminf X,,dP. Combining,
liminf £[X,] > E[liminf X, ] —e.

As € > 0 is arbitrarily small, this gives the ‘liminf’ part; the ‘limsup’ part is
similar.

(i) If X,, — X as., (ii) follows from (i). If X, — X in probability,
there is a subsequence X,, — X a.s. (quote). Then by (i), X € L;, and
E[X,,| — E[X]. Similarly, every subsequence has a further sub-subsequence
— X a.s., along which the mean converges to E[X]. But this implies con-
vergence along the whole sequence (check). //

Uniform integrability is what is needed to pass from a.s. convergence to
Ly-convergence, and to strengthen convergence in prob. to a.s. convergence:

Proposition 1. (i) If X, is UI and a.s. convergent, it is L;-convergent.
(i) If p € (0,00), X,, — X in prob. and (|X,|?) is UL, then X,, — X in L,.



Proof. (i) For a > 0, define f,(z) as —a for x < —a, z for —a < z < a, +a
for > a. Then f, is bounded and continuous, and (check) |z — f,(x)| < .
By the Triangle Inequality,

HXm - Xn”l < ||fa(Xm) - fa<Xn)H1 + HXm - fa<Xm>||1 + ||Xn - fa<Xn)H1

If X, = X a.s., then also f,(X,) = fo(Xs) a.s. as f, is continuous. As
|fa] < a, dominated convergence then shows that f,(X,) — f.(X«) in Ly
(so is Cauchy in L;). Also

X — fuo(Xom g/ X, |dP
X~ Sl < [l

by definition of f,. Let m,n — oco: the first term on the RHS — 0 as f,(X,,)
is Cauchy in L;. By U, the second and third terms — 0 as a — oo. This
shows that X, is Cauchy in Ly, so convergent in L; as L; is complete (Riesz-
Fischer theorem — quote). //

(ii) We quote this, as we shall not need it; see e.g. Ash [A], Th. 7.5.4.

Proposition 2. (X,) is Ul iff E[|X,]|] is bounded and (X,,) is uniformly
absolutely continuous, i.e.

supn/A X, [dP =0 (P(A) — 0).
Proof. 1f (X,,) is Ul,

/ X,[dP :/ |Xn|dP+/ X,.|dP < | X,.|dP+cP(A).
A AN{|Xn|>c} An{|Xn|<c}

- HIXal2e

Choose € > 0. For ¢ large enough, the first term < €¢/2 for all n. Then if
P(A) <€/(2¢), [4]|Xn|dP < €, proving (X,,) unif. abs. continuous. Also

E|X,)| :/ |Xn|dP+/ X,|dP < ¢+ ¢
{1 Xn|>c} {IXnl<c}

for large n (the first term by UI), so E|X,| is bounded.
Conversely, by Markov’s Inequality

P(|X,| >¢) <c'E|X,| < clsup, E|X,| =0 (¢ = 00),
uniformly in n. This and the uniform absolute continuity give

[ XadP 50 (e 0)
{Xn[>c}
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uniformly in n, giving (X,,) UL //

Lemma (UI Lemma). If X € Ly, then the family { E[X|B]} as B varies
over all sub-o-fields of A is UL

Proof. |E[X|B]| < E[|X| |B]. Also, for a > 0 {|E[X|B] | > a} C
{E[|X]| |B] > a}, so I{|E[X|B] | > a}) < I({E|[|X] |B] > a}). Multiply:
|EIX[B] [T{[E[X[B] | > a}) < B[ X] IBII{E[X] |B] > a}).

Take expectations. Writing A := {E[|X| |B] > a}, the RHS gives [, E[|X]| |B]dP,
and as A is B-measurable, this is [, E[|X|]dP, by definition of conditional
expectation. Splitting between {|X| < b} and {|X| > b}, this is at most

P(E||X]| |B] > a)+ X|dP.
(E[|X] |B] > a) /{|X>b}| |
But

P(E(|IX| |B] = a) < a™' E[E[| X]|B]

by Markov’s Inequality, which is a~* E| X | by the Conditional Mean Formula.
Combining,

b
supB/AEHX| BlaP < CEIX|+ [ IX|dP

Take b := y/a and let @ — co: RHS — 0 (as X € L;), so LHS — 0. This
says that { E[X|B]} is Ul as required. //

Theorem (Lévy). If Y € L; and (F,) is a filtration with F,1 F., then
ElY|F,] = E[Y|Fx] asandin L.

Proof. If X,, := E[Y|F,], then X,, is a mg (w.r.t. (F,)), and is UI (by
the Ul Lemma). As E[|X,|] < E[|Y]] < oo, (X,) is an Ly-bounded mg, so
a.s. convergent (Doob’s Mg Convergence Thm), to X, say. Also X, is L;-
convergent, by the Theorem (ii). It remains to show that X, = E[Y|F].
For A € F,,

/YdP:/ E[Y\}"n]dP:/XndP%/XoodP,
A A A A
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by L;-convergence. So

/ YdP = / X dP,
A A

for all A € F,, for each n. As the F,, generate F.,, this extends to A € F,
(by a monotone class argument, or Carathéodory’s Extension Theorem). As
X, is F,-measurable and F, C F,, X, is Fy-measurable, hence so is its
limit X,. So

Xoo = E[Y | Fsl,

by definition of conditional expectation. //

If the index set {1, 2, ...} of the filtration (F,) extends to {1,2,...,00} so
that {X, :n=1,2,...,00} is a (sub-)mg w.r.t. this filtration, the (sub-)mg
is called closed, with closing (or last) element X.

Theorem. Let (X,,) be a Ul submg. Then sup, F[X;] < oo, and X,, con-
verges to a limit X a.s. and in Lq, which closes the submg.

Proof. By Ul sup E[|X,|] < oco. So by Doob’s Mg Convergence Thm,
X, = X a.s. Again by Ul, X,, = X in L;.

If A, € F, and k > n, [, X, dP < [, XydP as (X,,) is a submg. Let
k — oo: X — X in Ly gives [, X, dP < [, XodP. So by definition of
conditional expectation, X,, < F[X|Fx]. So X closes the submg. //

Theorem. X, is a Ul mg iff there exists Y € L; with
X, = E[Y|F,].
Then X,, — E[Y|F] a.s. and in L.

Proof. If X is a Ul mg, it is closed (by X ), by above, and then X,, — X
a.s. and in Lq; take Y := X ..

Conversely, given Y € L; and X,, := E[Y|F,], (X,) is a mg, and is Ul
by above; the convergence follows by Lévy’s result above. //



