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3. Martingale Convergence and Uniform Integrability
Martingale transforms (Burkholder).

If X = (Xn) is a mg [submg, supermg], C = (Cn) is predictable, write

(C •X)n :=
n∑
1

Ck(Xk −Xk−1)

(C •N is the martingale [submg, supermg] transform of X by C). Then
(i) if C is bounded and non-negative and X is a submg [supermg], C •X is
a submg [supermg] null at 0;
(ii) if C is bounded and X is a mg, C •X is a mg null at 0.
Proof. As C is bounded and X is integrable, C •X is integrable; it is null at
0 (empty sum is 0). As C is predictable, Cn is Fn−1-measurable, so

E[(C •X)n − (C •X)n−1|Fn−1] = E[Cn(Xn −Xn−1|Fn−1] = CnE[Xn −Xn−1|Fn−1],

taking out what is known. This is ≥ 0 in case (i) with C ≥ 0 and X a submg,
and 0 in case (ii) with X a mg. //
Upcrossings.

For a process X and interval [a, b], define stopping times σk, τk by σ1 :=
min{n : Xn ≤ a}, τ1 := min{n > σ1 : Xn ≥ b}, and inductively σk :=
min{n > τk−1 : Xn ≤ a}, τk := min{n > σk : Xn ≥ b}. Call [σk, τk] an
upcrossing of [a, b] by X, and write Un := Un([a, b], X) for the number of
such upcrossings by time n.

Upcrossing Inequality (Doob). If X is a submg,

EUn([a, b], X) ≤ E[(Xn − a)+]/(b− a).

Proof. As (X − a)+ is a submg by Q2 (iii) and upcrossings of [a, b] by X
correspond to upcrossings of [0, b − a] by (X − a)+, we may (by passing to
(X − a)+) take X ≥ 0, a = 0. Write

Vn :=
∑
k≥1

I(σk < n ≤ τk).

Then V is predictable (this comes from the ”<” above – we know at time
n − 1 whether the kth upcrossing has begun). So 1 − V is predictable. So
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by above the transform (1− V ) •X is a submg. So

E[(1− V ) •X)n] ≥ E[(1− V ) •X)0] = 0 : E[(V •X)n] ≤ E[Xn].

Each completed upcrossing contributes at least b to the sum in (V •X)n =∑n
1 Vk(Xk −Xk−1), and the contribution of the last (possibly uncompleted)

upcrossing is ≥ 0, so
(V •X)n ≥ bUn.

Combining, bUn ≤ E[(V •X)n] ≤ E[Xn]: EUn ≤ E[Xn]/b. Reverting to the
original notation gives the result. //

(Sub-)Martingale Convergence Theorem (Doob). An L1-bounded
submg X = (Xn) (i.e. E|Xn| ≤ K for some K and all n) is a.s. conver-
gent.

Proof. For a < b rational, the expected number EUn of upcrossings of [a, b]
up to time n is ≤ (K + |a|)/(b − a) < ∞, for each n. As Un increases in n,
monotone convergence gives E[supUn] < ∞. So U := supUn < ∞ a.s. If
X∗ := liminfXn, X

∗ := limsupXn, {X∗ < X∗} = ∪a,b{X∗ < a < b < X∗}
(a < b rational). Each such set is null (or U would be infinite). So their union
is null, i.e. X∗ = X∗ a.s.: X is a.s. convergent (its limit X∞ may be infinite).
But E|X∞| = E[lim(inf)|Xn|] ≤ liminfE[|Xn|] (by Fatou), ≤ K < ∞. So
|X∞| < ∞ a.s., and Xn → X∞ finite, a.s. //

Corollary (Doob). A non-negative supermg Xn is a.s. convergent.

Proof. As Xn is a supermg, EXn decreases. As X ≥ 0, E[Xn] ≥ 0. So
E[|Xn|] = E[Xn] is decreasing and bounded below, so (convergent and)
bounded: Xn is L1-bounded. So the submg −Xn is L1-bounded, so a.s.
convergent by Doob’s Theorem, so Xn is a.s. convergent.

Uniform Integrability. Call Xn uniformly integrable (UI) if

supn

∫
{|Xn|>a}

|Xn|dP ↓ 0 (a ↑ ∞).

Note that:
(i) If (Xn) are UI, then each Xn is integrable. For,

E|Xn| =
∫
{|Xn|≤a}

|Xn|dP +
∫
{|Xn|>a}

|Xn|dP ≤ a+ o(1) < ∞.
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(ii) If each |Xn| ≤ Y ∈ L1, then (Xn) is UI.
(iii) If supn|Xn| ∈ L1, then (Xn) is UI, as then

supn

∫
{|Xn|>a}

|Xn|dP ≤
∫
{|Xn|≥a}

(supk|Xk|)dP → 0 (a → ∞),

by dominated convergence.
The next result extends Fatou’s Lemma and dominated convergence.

Theorem. For (Xn) UI,
(i) E[lim inf Xn] ≤ lim inf E[Xn] ≤ lim supE[Xn] ≤ E[lim sup Xn].
(ii) If Xn → X a.s. or in prob., then X ∈ L1 and E[Xn] → E[X].

Proof. (i) For c ≥ 0,

E[Xn] =
∫
XndP =

∫
{Xn<−c}

XndP +
∫
{Xn≥−c}

XndP.

Choose ϵ > 0. By UI, we can take c so large that each first term on RHS has
modulus < ϵ. As XnI(Xn ≥ −c) ≥ −c, integrable, Fatou’s Lemma gives

lim inf
∫
{Xn≥−c}

XndP ≥
∫

lim infXnI(Xn ≥ −c)dP.

As XnI(Xn ≥ −c) ≥ Xn, RHS ≥
∫
lim infXndP . Combining,

lim inf E[Xn] ≥ E[lim infXn]− ϵ.

As ϵ > 0 is arbitrarily small, this gives the ‘liminf’ part; the ‘limsup’ part is
similar.
(ii) If Xn → X a.s., (ii) follows from (i). If Xn → X in probability,
there is a subsequence Xnk

→ X a.s. (quote). Then by (i), X ∈ L1, and
E[Xnk

] → E[X]. Similarly, every subsequence has a further sub-subsequence
→ X a.s., along which the mean converges to E[X]. But this implies con-
vergence along the whole sequence (check). //

Uniform integrability is what is needed to pass from a.s. convergence to
L1-convergence, and to strengthen convergence in prob. to a.s. convergence:

Proposition 1. (i) If Xn is UI and a.s. convergent, it is L1-convergent.
(ii) If p ∈ (0,∞), Xn → X in prob. and (|Xn|p) is UI, then Xn → X in Lp.
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Proof. (i) For a > 0, define fa(x) as −a for x ≤ −a, x for −a ≤ x ≤ a, +a
for x ≥ a. Then fa is bounded and continuous, and (check) |x− fa(x)| ≤ x.
By the Triangle Inequality,

∥Xm −Xn∥1 ≤ ∥fa(Xm)− fa(Xn)∥1 + ∥Xm − fa(Xm)∥1 + ∥Xn − fa(Xn)∥1.

If Xn → X∞ a.s., then also fa(Xn) → fa(X∞) a.s. as fa is continuous. As
|fa| ≤ a, dominated convergence then shows that fa(Xn) → fa(X∞) in L1

(so is Cauchy in L1). Also

∥Xm − fa(Xm)∥1 ≤
∫
{|Xm|>a}

|Xm|dP

by definition of fa. Let m,n → ∞: the first term on the RHS → 0 as fa(Xn)
is Cauchy in L1. By UI, the second and third terms → 0 as a → ∞. This
shows that Xn is Cauchy in L1, so convergent in L1 as L1 is complete (Riesz-
Fischer theorem – quote). //
(ii) We quote this, as we shall not need it; see e.g. Ash [A], Th. 7.5.4.

Proposition 2. (Xn) is UI iff E[|Xn|] is bounded and (Xn) is uniformly
absolutely continuous, i.e.

supn

∫
A
|Xn|dP → 0 (P (A) → 0).

Proof. If (Xn) is UI,∫
A
|Xn|dP =

∫
A∩{|Xn|≥c}

|Xn|dP+
∫
A∩{|Xn|<c}

|Xn|dP ≤
∫
{|Xn|≥c}

|Xn|dP+cP (A).

Choose ϵ > 0. For c large enough, the first term < ϵ/2 for all n. Then if
P (A) < ϵ/(2c),

∫
A |Xn|dP < ϵ, proving (Xn) unif. abs. continuous. Also

E|Xn| =
∫
{|Xn|≥c}

|Xn|dP +
∫
{|Xn|<c}

|Xn|dP < ϵ+ c

for large n (the first term by UI), so E|Xn| is bounded.
Conversely, by Markov’s Inequality

P (|Xn| ≥ c) ≤ c−1E|Xn| ≤ c−1supnE|Xn| → 0 (c → ∞),

uniformly in n. This and the uniform absolute continuity give∫
{|Xn|≥c}

|Xn|dP → 0 (c → ∞)
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uniformly in n, giving (Xn) UI. //

Lemma (UI Lemma). If X ∈ L1, then the family {E[X|B]} as B varies
over all sub-σ-fields of A is UI.

Proof. |E[X|B]| ≤ E[|X| |B]. Also, for a > 0 {|E[X|B] | > a} ⊂
{E[|X| |B] > a}, so I({|E[X|B] | > a}) ≤ I({E[|X| |B] > a}). Multiply:

|E[X|B] |I({|E[X|B] | > a}) ≤ E[|X| |B]I({E[|X| |B] > a}).

Take expectations. WritingA := {E[|X| |B]≥ a}, the RHS gives
∫
AE[|X| |B]dP ,

and as A is B-measurable, this is
∫
AE[|X|]dP , by definition of conditional

expectation. Splitting between {|X| ≤ b} and {|X| > b}, this is at most

P (E[|X| |B] ≥ a) +
∫
{|X|>b}

|X|dP.

But
P (E[|X| |B] ≥ a) ≤ a−1E[E[|X||B]]

by Markov’s Inequality, which is a−1E|X| by the Conditional Mean Formula.
Combining,

supB
∫
A
E[|X| |B]dP ≤ b

a
E|X|+

∫
{|X|>b}

|X|dP.

Take b :=
√
a and let a → ∞: RHS → 0 (as X ∈ L1), so LHS → 0. This

says that {E[X|B]} is UI, as required. //

Theorem (Lévy). If Y ∈ L1 and (Fn) is a filtration with Fn↑ F∞, then

E[Y |Fn] → E[Y |F∞] a.s and in L1.

Proof. If Xn := E[Y |Fn], then Xn is a mg (w.r.t. (Fn)), and is UI (by
the UI Lemma). As E[|Xn|] ≤ E[|Y |] < ∞, (Xn) is an L1-bounded mg, so
a.s. convergent (Doob’s Mg Convergence Thm), to X∞, say. Also Xn is L1-
convergent, by the Theorem (ii). It remains to show that X∞ = E[Y |F∞].
For A ∈ Fn, ∫

A
Y dP =

∫
A
E[Y |Fn]dP =

∫
A
XndP →

∫
A
X∞dP,
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by L1-convergence. So ∫
A
Y dP =

∫
A
X∞dP,

for all A ∈ Fn, for each n. As the Fn generate F∞, this extends to A ∈ F∞
(by a monotone class argument, or Carathéodory’s Extension Theorem). As
Xn is Fn-measurable and Fn ⊂ F∞, Xn is F∞-measurable, hence so is its
limit X∞. So

X∞ = E[Y |F∞],

by definition of conditional expectation. //

If the index set {1, 2, . . .} of the filtration (Fn) extends to {1, 2, . . . ,∞} so
that {Xn : n = 1, 2, . . . ,∞} is a (sub-)mg w.r.t. this filtration, the (sub-)mg
is called closed, with closing (or last) element X∞.

Theorem. Let (Xn) be a UI submg. Then supnE[X+
n ] < ∞, and Xn con-

verges to a limit X∞ a.s. and in L1, which closes the submg.

Proof. By UI, supE[|Xn|] < ∞. So by Doob’s Mg Convergence Thm,
Xn → X∞ a.s. Again by UI, Xn → X∞ in L1.

If An ∈ Fn and k ≥ n,
∫
A XndP ≤

∫
AXkdP as (Xn) is a submg. Let

k → ∞: Xk → X∞ in L1 gives
∫
AXndP ≤

∫
AX∞dP . So by definition of

conditional expectation, Xn ≤ E[X∞|F∞]. So X∞ closes the submg. //

Theorem. Xn is a UI mg iff there exists Y ∈ L1 with

Xn = E[Y |Fn].

Then Xn → E[Y |F∞] a.s. and in L1.

Proof. If X is a UI mg, it is closed (by X∞), by above, and then Xn → X∞
a.s. and in L1; take Y := X∞.

Conversely, given Y ∈ L1 and Xn := E[Y |Fn], (Xn) is a mg, and is UI
by above; the convergence follows by Lévy’s result above. //
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