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Corollary (UI Mg Convergence Theorem). For a mg X = (Xn), the
following are equivalent:
(i) X is UI;
(ii) X converges a.s. and in L1 (to X∞, say);
(iii) X is closed by a random variable Y : Xn = E[Y |Fn];
(iv) X is closed by its limit X∞: Xn = E[X∞|Fn].

Proof. It remains to identify Y with the a.s. (or L1) limit X∞, which follows
by uniqueness of limits. //

Note. 1. The UI mgs (also called regular mgs) are the ‘nice’ mgs. Note that
all the randomness is in the closing rv Y = X∞. As time progresses, more of
Y is revealed as more information becomes available. (Think of progressive
revelation, as in – choose your metaphor – a ‘striptease’, or, ‘the Day of
Judgement’).
2. UI mgs are also common, and crucially important in Mathematical Fi-
nance. There, one does two things: (i) discount all asset prices (so as to
work with real rather than nominal prices); (ii) change from the real-world
probability measure P to an equivalent martingale measure Q (EMM, or risk-
neutral measure) under which discounted asset prices S̃t become (Q)-mgs:

S̃t = EQ[S̃T |Ft]

(here T < ∞ is typically the expiry time of an option). See e.g. [BK], esp.
Ch. 4.

Matters are simpler in the Lp case for p ∈ (1,∞). Call X = (Xn) Lp-
bounded if

supn∥Xn∥p < ∞

(so in particular each Xn ∈ Lp). We may take p = 2 for simplicity, and
because of the link with Hilbert-space methods and the important Kunita-
Watanabe Inequalities.

Theorem (Lp-Mg Theorem). If p > 1, an Lp-bounded mg Xn is UI, and
converges to its limit X∞ a.s. and in Lp.
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Proof. First, Xn is UI: for, if a > 0,

ap−1
∫
{|Xn|>a}

|Xn|dP ≤
∫
|Xn|pdP.

So if C := supn∥Xn∥p < ∞,

supn

∫
{|Xn|>a}

|Xn|dP ≤ Cp/ap−1 → a (a → ∞)

(as p > 1), so Xn is UI.
So (UI Mg Th.) Xn = E[X∞|Fn], where Xn → X∞ a.s. and X∞ ∈ L1.

So |Xn|p → |X∞|p a.s. By Fatou’s Lemma∫
|X∞|pdP ≤ lim inf

∫
|Xn|pdP ≤ Cp < ∞,

so X∞ ∈ Lp.
If X∞ is bounded (|X∞(ω)| ≤ a for all ω), then Xn = E[X∞|Fn] is also

bounded by a. Then |Xn − X∞|p ≤ 2ap, and Xn → X∞ in Lp follows by
dominated convergence.

In the general case, we use

X∞ = (X∞ ∧ a) + (X∞ − a)+

(check). Then

∥E[X∞|Fn]−X∞∥p ≤ ∥E[X∞ ∧ a|Fn]−X∞ ∧ a∥p + 2∥(X∞ − a)+∥p

(as conditional expectations decrease Lp-norms. This is true for p ≥ 1, but
simpler for p = 2 – the only case we shall need – as then conditional ex-
pectation is a projection. We quote this – see e.g. [S], Ch. 22 (p = 2), 23
(p ∈ [1,∞]).) By the bounded case, the first term on RHS → 0 as n → ∞.
The second term→ 0 as a → ∞ by dominated convergence (recallX∞ ∈ Lp).
So Xn = E[X∞|Fn] → X∞ in Lp as well as a.s. //

4. Martingales in continuous time
A stochastic process X = (X(t))0≤t<∞ is a martingale (mg) relative to

({Ft}, P ) if
(i) X is adapted, and E|X(t)| < ∞ for all ≤ t < ∞;
(ii) E[X(t)|Fs] = X(s) P - a.s. (0 ≤ s ≤ t),
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and similarly for submags (with ≤ above) and supermags (with ≥).

In continuous time there are regularization results, under which one can
take X(t) RCLL in t (basically t → EX(t) has to be right-continuous). Then
the analogues of the results for discrete-time martingales hold true. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition below, easy in discrete time, is a deep result in continuous time.

Interpretation. Martingales model fair games. Submartingales model
favourable games. Supermartingales model unfavourable games.

Martingales represent situations in which there is no drift, or tendency,
though there may be lots of randomness. In the typical statistical situation
where we have data = signal + noise, martingales are used to model the
noise component. It is no surprise that we will be dealing constantly with
such decompositions later (with ‘semi-martingales’).

Closed martingales. As before, some martingales are of the form

Xt = E[X|Ft] (t ≥ 0)

for some integrable random variable X. Then X is said to close (Xt), which
is called a closed (or closable) martingale, or a regular martingale. As before,
closed martingales have specially good convergence properties:

Xt → X∞ (t → ∞) a.s. and in L1,

and then also
Xt = E[X∞|Ft], a.s.

Again, this property is equivalent also to uniform integrability (UI):

supt

∫
{|Xt|>x}

|Xt|dP → 0 (x → ∞).

These are the mgs that are crucial in mathematical finance. Here, the clos-
ing random variable is the payoff of the option. The option price is what
one would expect – the (conditional) expectation of the payoff, given what
one knows. This intuition is exactly right (and part of the crucial Funda-
mental Theorem of Asset Pricing), provided that one can bring martingale
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theory to bear. For this, one needs to change from the real-world measure to
the equivalent martingale measure (EMM) – the measure making discounted
prices martingales (recall: EMM exists iff no arbitrage; EMM unique iff mar-
ket complete).

Doob-Meyer Decomposition. One version in continuous time of the Doob
decomposition in discrete time – called the Doob-Meyer (or the Meyer) de-
composition – follows next but needs one more definition. A process X is
called of class (D) if

{Xτ : τ a finite stopping time}

is uniformly integrable. Then a (càdlàg, adapted) process Z is a submartin-
gale of class (D) if and only if it has a decomposition

Z = Z0 +M + A

with M a uniformly integrable martingale and A a predictable increasing
process, both null at 0. This composition is unique.

Square-integrable Martingales. For M = (Mt) a martingale, write M ∈ M2

if M is L2-bounded:
suptE(M2

t ) < ∞,

and M ∈ M2
0 if further M0 = 0. Write cM2, cM2

0 for the subclasses of
continuous M .

As before, Lp-bounded mgs are convergent for p > 1. So for M ∈ M2,M
is convergent:

Mt → M∞ a.s. and in mean square

for some random variable M∞ ∈ L2. One can recover M from M∞ by

Mt = E[M∞|Ft].

The bijection
M = (Mt) ↔ M∞

is in fact an isometry, and asM∞ ∈ L2, which is a Hilbert space, so too isM2.
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Quadratic Variation. A non-negative right-continuous submartingale is of
class (D). So it has a Doob-Meyer decomposition. We specialize this to X2,
with X ∈ cM2:

X2 = X2
0 +M + A,

with M a continuous martingale and A a continuous (so predictable) and
increasing process. We write

⟨X⟩ := A

here, and call ⟨X⟩ the quadratic variation of X. We shall see later that
this is a crucial tool for the stochastic integral. We shall further introduce a
variant on ⟨X⟩ (the ’angle-bracket process’), called [X] (the ’square-bracket
process’), needed to handle jumps.

Quadratic Covariation.
We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨.⟩ to a bilinear form ⟨., .⟩ with

two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩.

(The polarization identity reflects the Hilbert-space structure of the inner
product ⟨., .⟩.) If N is of finite variation, M ± N has the same quadratic
variation as M , so ⟨M,N⟩ = 0.

Where there is a Hilbert-space structure, one can use the language of
projections, of Pythagoras’ theorem etc., and draw diagrams as in Euclidean
space. The right way to treat the Linear Model of statistics is in such terms
(analysis of variance = ANOVA, sums of squares etc.)

L1, L2 and Lp.
We quote from Functional Analysis: for p ∈ (1,∞), define the conjugate

index q ∈ (1,∞) by
1

p
+

1

q
= 1.

Then Lp and Lq are dual: each continuous linear functional on Lp can be
identified with a function g ∈ Lq, acting on functions f ∈ Lp by

f 7→ (f, g) :=
∫
fg
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(fg ∈ L1, by Hölder’s inequality). So for p = 2, q = 2 also: L2 is self-
dual. L2 is Hilbert space, H, which has an inner product, (f, g) :=

∫
fg (or

(f, g) :=
∫
fg in the complex case). This is one reason why L2 is the nicest

of the Lp-spaces, and why Lp for p ∈ (1,∞) is nicer than L1.
For p > 1, Lp-mgs are UI, and so ‘nice’. For p = 1, this no longer holds:

what is needed instead is the ”L logL” condition,

E[|X| log+ |X|] < ∞.

Also important in Functional Analysis are the Hardy spaces, Hp. Hp can
be identified with a subspace of Lp. For p ∈ (1,∞), the dual of Hp is Hq, as
with Lp-spaces. But H1 has dual BMO, the space of functions of bounded
mean oscillation, which has many connections with martingale theory.
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