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5. Other classes of process

Gaussian Processes
A vectorX ∈ Rn has themultivariate normal distribution in n dimensions

if all linear combinations a′X =
∑n

i=1aiXi of its components are normally
distributed (in one dimension). Such a distribution is determined by a vector
µ of means and a non-negative definite n × n matrix Σ of covariances, and
is written N(µ,Σ). Then X has distribution N(µ,Σ) if and only if it has
characteristic function

ϕX(t) := E[exp {it′ ·X}] = exp{it′ · µ− 1

2
t′Σt} (t ∈ Rn).

Further, if Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)n/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
,

(Edgeworth’s formula: F.Y. EDGEWORTH (1845-1926) in 1892). A pro-
cess X = (X(t))t≥0 is Gaussian if all its finite-dimensional distributions are
Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with E(X(t)) = µ(t), the mean function;
(ii) a non-negative definite function σ(s, t) with σ(s, t) = cov(X(s), X(t)),
the covariance function.

Gaussian processes have many interesting properties. Among these, we
quote Belyaev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time interval, however short. Naturally,
we shall confine attention in this book to continuous Gaussian processes.

Markov Processes
X is Markov if for each t, each A ∈ σ(X(s) : s > t) (the ‘future’) and
B ∈ σ(X(s) : s < t) (the ‘past’),

P (A|X(t), B) = P (A|X(t)).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned – equivalently, past and

1



future are conditionally independent given the present. X is said to be strong
Markov if the above holds with the fixed time t replaced by a stopping time
τ (a random variable). This is a real restriction of the Markov property in
the continuous-time case (though not in discrete time). Perhaps the simplest
example of a Markov process that is not strong Markov is given by

X(t) := 0 (t ≤ τ), t− τ (t ≥ τ),

where τ is an exponentially distributed random variable. Then X is Markov
(from the lack of memory property of the exponential distribution), but not
strong Markov (the Markov property fails at the stopping time τ). One must
expect the strong Markov property to fail in cases, as here, when ‘all the
action is at random times’. Another example of a Markov but not strong
Markov process is a left-continuous Poisson process – obtained by taking a
Poisson process (see below) and modifying its paths to be left-continuous
rather than right-continuous.

Diffusions
A diffusion is a path-continuous strong Markov process such that for each

time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(X(t+ h)−X(t))|X(t) = x],

σ2(t, x) := limh↓0
1

h
E[(X(t+ h)−X(t))2|X(t) = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.
The term diffusion derives from physical situations involving Brownian

motion (below). The mathematics of heat diffusing through a conducting
medium (which goes back to Fourier in the early 19th century) is intimately
linked with Brownian motion (the mathematics of which is 20th century).

The theory of diffusions can be split according to dimension. For one-
dimensional diffusions, there are a number of ways of treating the theory. For
higher-dimensional diffusions, there is basically one way: via the stochastic
differential equation methodology (or its reformulation in terms of a martin-
gale problem). This shows the best way to treat the one-dimensional case: the
best method is the one that generalizes. It also shows that Markov processes
and martingales, as well as being the two general classes of stochastic process
with which one can get anywhere mathematically, are also intimately linked
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technically. We will encounter diffusions largely as solutions of stochastic
differential equations.

6. Brownian motion

Brownian motion originates in work of the botanist Robert Brown in 1828.
It was introduced into finance by Louis Bachelier in 1900, and developed in
physics by Albert Einstein in 1905 (see the handout for background and
references).

The fact that Brownian motion exists is quite deep, and was first proved
by Norbert WIENER (1894–1964) in 1923. In honour of this, Brownian
motion is also known as the Wiener process, and the probability measure
generating it – the measure P ∗ on C[0, 1] (one can extend to C[0,∞)) by

P ∗(A) = P (W. ∈ A) = P ({t → Wt(ω)} ∈ A)

for all Borel sets A ∈ C[0, 1] – is called Wiener measure.

Definition and Existence

Definition. A stochastic processX = (X(t))t≥0 is a standard (one-dimensional)
Brownian motion, BM or BM(R), on some probability space (Ω,F ,P), if
(i) X(0) = 0 a.s.,
(ii)X has independent increments: X(t+u)−X(t) is independent of σ(X(s) :
s ≤ t) for u ≥ 0,
(iii) X has stationary increments: the law of X(t + u)−X(t) depends only
on u,
(iv) X has Gaussian increments: X(t + u) − X(t) is normally distributed
with mean 0 and variance u, X(t+ u)−X(t) ∼ N(0, u),
(v) X has continuous paths: X(t) is a continuous function of t, i.e. t →
X(t, ω) is continuous in t for all ω ∈ Ω.

The path continuity in (v) can be relaxed by assuming it only a.s.; we
can then get continuity by excluding a suitable null-set from our probability
space.

We shall henceforth denote standard Brownian motion BM(R) by W =
(W (t)) (W for Wiener), though B = (B(t)) (B for Brown) is also com-
mon. Standard Brownian motion BM(Rd) in d dimensions is defined by
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W (t) := (W1(t), . . . ,Wd(t)), where W1, . . . ,Wd are independent standard
Brownian motions in one dimension (independent copies of BM(R)).

We turn next to Wiener’s theorem, on existence of Brownian motion.
The proof (cf. [BK], 5.3.1) is a streamlined version of the classical one due
to Lévy in his book of 1948 and Cieselski in 1961 (see below for references).

Theorem (Wiener, 1923). Brownian motion exists.

Covariance. Before addressing existence, we first find the covariance func-
tion. For s ≤ t, Wt = Ws + (Wt −Ws), so as E(Wt) = 0,

cov(Ws,Wt) = E(WsWt) = E(W 2
s ) + E[Ws(Wt −Ws)].

The last term is E(Ws)E(Wt −Ws) by independent increments, and this is
zero, so

cov(Ws,Wt) = E(W 2
s ) = s (s ≤ t) : cov(Ws,Wt) = min(s, t).

A Gaussian process (one whose finite-dimensional distributions are Gaus-
sian) is specified by its mean function and its covariance function, so among
centered (zero-mean) Gaussian processes, the covariance function min(s, t)
serves as the signature of Brownian motion.

Finite-dimensional Distributions. For 0 ≤ t1 < . . . < tn, the joint law of
X(t1), X(t2), . . . , X(tn) can be obtained from that ofX(t1), X(t2)−X(t1), . . . ,
X(tn)−X(tn−1). These are jointly Gaussian, hence so are X(t1), . . . , X(tn):
the finite-dimensional distributions are multivariate normal. Recall that the
multivariate normal law in n dimensions, Nn(µ,Σ) is specified by the mean
vector µ and the covariance matrix Σ (non-negative definite). So to check the
finite-dimensional distributions of BM – stationary independent increments
with Wt ∼ N(0, t) – it suffices to show that they are multivariate normal
with mean zero and covariance cov(Ws,Wt) = min(s, t) as above.
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