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Because of the above corollary, we will not be able to define integrals
with respect to Brownian motion by a path-by-path procedure (for BM the
relevant convergence in the above results in fact takes place with probability
one). However, turning to the class of square-integrable continuous mar-
tingales cM2 (continuous square-integrable martingales), we find that these
processes have finite quadratic variation, but all variations of higher order
are zero and, except for trivial cases, all variations of lower order are infinite
with positive probability. So quadratic variation is indeed the right variation
to study. Returning to Brownian motion, we observe that for s < t,

E(W (t)2|Fs) = E([W (s) + (W (t)−W (s))]2

= W (s)2 + 2W (s)E[(W (t)−W (s))|Fs] + E[(W (t)−W (s))2|Fs]

= W (s)2 + 0 + (t− s).

So W (t)2 − t is a martingale. This shows that the quadratic variation is the
adapted increasing process in the Doob-Meyer decomposition of W 2 (recall
that W 2 is a nonnegative submartingale and thus can be written as the sum
of a martingale and an adapted increasing process). This result extends to
the class cM2 (and indeed to the broader class of local martingales – below).

Theorem. A martingale M ∈ cM2 is of finite quadratic variation ⟨M⟩, and
⟨M⟩ is the unique continuous increasing adapted process vanishing at zero
with M2 − ⟨M⟩ a martingale.

The quadratic variation result above leads to Lévy’s 1948 result, the mar-
tingale characterization of Brownian motion. Recall that W (t) is a continu-
ous martingale with respect to its natural filtration (Ft) and with quadratic
variation t. There is a remarkable converse, due to Lévy:

Theorem (Martingale Characterization of BM). If M is any
continuous, square-integrable (local) (Ft)-martingale with M(0) = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

Expressed differently this is:
If M is any continuous, square-integrable (local) (Ft)-martingale withM(0) =
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0 and M(t)2 − t a martingale, then M is an (Ft)-Brownian motion.
In view of the fact that ⟨W ⟩(t) = t, a further useful fact about Brownian

motion may be guessed: If M is a continuous martingale then there exists a
Brownian motion W (t) such that M(t) = W (⟨M⟩(t)), i.e. the martingale M
can be transformed into a Brownian motion by a random time-change. These
results already imply that Brownian motion is the fundamental continuous
martingale.

Properties of Brownian Motion

Brownian Scaling. For any c > 0, write

Wc(t) := c−1W (c2t), t ≥ 0

with W BM . Then Wc is Gaussian, with mean 0, variance c−2 × c2t = t and
covariance

cov(Wc(s),Wc(t)) = c−2E(Wc(s),Wc(t)) = c−2 min(c2s, c2t)

= min(s, t) = cov(W (s),W (t)).

Also Wc has continuous paths, as W does. So Wc has all the properties of
Brownian motion. So, Wc is Brownian motion. It is said to be derived from
W by Brownian scaling with scale-factor c > 0. Since

(W (ut) : t ≥ 0) = (
√
uW (t) : t ≥ 0) in law, ∀u > 0,

W is called self-similar with index 1/2. Brownian motion is thus a fractal. A
piece of Brownian path, looked at under a microscope, still looks Brownian,
however much we ‘zoom in and magnify’. Of course, the contrast with a func-
tion f with some smoothness is stark: a differentiable function begins to look
straight under repeated zooming and magnification, because it has a tangent.

Time-Inversion. Write
Xt := tW (1/t).

Thus X0 = 0, and X has mean 0 and covariance

cov(Xs, Xt) = st.cov(B(1/s), B(1/t)) = st.min(1/s, 1/t) = min(t, s) = min(s, t).

Since X has continuous paths also, as above, X is Brownian motion. We
say that X is obtained from W by time-inversion. This property is useful in
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transforming properties of BM ‘in the large’ (t → ∞) to properties ‘in the
small’, or local properties (t → 0). For example, one can translate the law
of the iterated logarithm (LIL) from global to local form.

Zero set Z of Brownian motion
This has many interesting properties – see the handout.

Parameters of Brownian Motion – Estimation and Hypothesis Testing.
If we form µt + σWt – or replace N(0, t) by N(µt, σt) in the definition

of Brownian increments – we obtain a Lévy process that has continuous
paths and Gaussian increments, called Brownian motion with drift µ and
diffusion coefficient σ, BM(µ, σ), rather than standard Brownian motion
BM = BM(0, 1) as above. By above, the quadratic variation of a segment
of BM(µ, σ) path on the time-interval [0, t] is σ2t, a.s. So, if we can observe
a Brownian path completely over any time-interval however short, then in
principle we can determine the diffusion coefficient σ with probability one.
In particular, we can distinguish between two different σs – σ1 and σ2, say
– with certainty. In technical language: the Wiener measures P∗1 and P∗2
representing these two Brownian motions with different σs on function space
are mutually singular. By contrast, if the two σs are the same, the two
measures are mutually absolutely continuous. We can then test a hypothesis
H0 : µ = µ0 against an alternative hypothesis H1 : µ = µ1 by means of the
appropriate likelihood ratio (LR). To find the form of the LR, one can use
Girsanov’s theorem. In practice, of course, we cannot observe a Brownian
path exactly over a time-interval: there would be an infinite amount of infor-
mation, and our ability to sample is finite. So one must use an appropriate
discretization – and then we lose the ability to pick up the diffusion coeffi-
cient with certainty. Problems of this kind are not only of theoretical interest,
but also important in practice. In mathematical finance, when the driving
noise is modeled by Brownian motion, the diffusion coefficient is called the
volatility, the parameter that describes how sensitive a stock-price is to price-
sensitive information (or economic uncertainty, or driving noise). Volatility
enters explicitly into the most famous formula of mathematical finance, the
Black-Scholes formula. Volatility estimation is of major importance. So too
is volatility modeling: alas, in real financial data the assumption of constant
volatility is usually untenable for detailed modeling, and one resorts instead
to more complicated models, say involving stochastic volatility.
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7. Point Processes; Poisson processes

Point processes
Suppose that one is studying earthquakes, or volcanic eruptions. The

events of interest are sudden isolated shocks, which occur at random in-
stants, the history of which unfolds with time. Such situations occur in
financial settings also: at the macro-economic level, the events might be
stock-market crashes, devaluations etc. At the micro-economic level, they
might be individual transactions. In other settings, the events might be the
occurrence of telephone calls, insurance claims, accidents or admissions to
hospital etc. The mathematical framework needed to handle such situations
is that of point processes.

A point process is a stochastic process whose realizations are, not paths
as above, but counting measures: random measures µ whose value on each
interval I (or Borel set, more generally) is a non-negative integer µ(I). Often,
each point may come labelled with some quantity (the size of the transaction,
or of the earthquake on the Richter scale, for instance), giving what is called
a marked point process. We turn below to the simplest and most fundamen-
tal point process, the Poisson process, and the simplest way to build it.

Stochastic processes with stationary independent increments are called
Lévy processes (after the great French probabilist Paul Lévy in the 1930s.
The two most basic prototypes of Lévy processes are Poisson processes and
Brownian motion.

We include below a number of results without proof. For proofs and
background, we refer to any good book on stochastic processes, e.g. [GS].
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