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Lévy Processes
Suppose we have a process X = (Xt : t ≥ 0) that has stationary indepen-

dent increments. Such a process is called a Lévy process, in honour of their
creator, the great French probabilist Paul Lévy. Then for each n = 1, 2, . . .,

Xt = Xt/n + (X2t/n −Xt/n) + . . .+ (Xt −X(n−1)t/n)

displays Xt as the sum of n independent (by independent increments), identi-
cally distributed (by stationary increments) random variables. Consequently,
Xt is infinitely divisible, so its CF is given by the Lévy-Khintchine formula.

The prime example is: the Wiener process, or Brownian motion, is a Lévy
process.
Poisson Processes.

The increment Nt+u − Nu (t, u ≥ 0) of a Poisson process is the number
of failures in (u, t + u] (in the language of renewal theory). By the lack-
of-memory property of the exponential, this is independent of the failures in
[0, u], so the increments ofN are independent. It is also identically distributed
to the number of failures in [0, t], so the increments of N are stationary. That
is, N has stationary independent increments, so is a Lévy process: Poisson
processes are Lévy processes.

We need an important property: two Poisson processes (on the same fil-
tration) are independent iff they never jump together (a.s.).

The Poisson count in an interval of length t is Poisson P (λt) (where the
rate λ is the parameter in the exponential E(λ) of the renewal-theory view-
point), and the Poisson counts of disjoint intervals are independent. This
extends from intervals to Borel sets:
(i) For a Borel set B, the Poisson count in B is Poisson P (λ|B|), where |.|
denotes Lebesgue measure; (ii) Poisson counts over disjoint Borel sets are
independent.
Poisson (Random) Measures.

If ν is a finite measure, call a random measure ϕ Poisson with intensity
(or characteristic) measure ν if for each Borel set B, ϕ(B) has a Poisson dis-
tribution with parameter ν(B), and for B1, . . . , Bn disjoint, ϕ(B1), . . . , ϕ(Bn)
are independent. One can extend to σ-finite measures ν: if (En) are disjoint
with union R and each ν(En) <∞, construct ϕn from ν restricted to En and
write ϕ for

∑
ϕn.
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Poisson Point Processes.
With ν as above a (σ-finite) measure on R, consider the product measure

µ = ν × dt on R × [0,∞), and a Poisson measure ϕ on it with intensity µ.
Then ϕ has the form

ϕ =
∑
t≥0

δ(e(t),t),

where the sum is countable. Thus ϕ is the sum of Dirac measures over ‘Poisson
points’ e(t) occurring at Poisson times t. Call e = (e(t) : t ≥ 0) a Poisson
point process with characteristic measure ν,

e = Ppp(ν).

For each Borel set B,

N(t, B) := ϕ(B × [0, t]) = card{s ≤ t : e(s) ∈ B}

is the counting process of B – it counts the Poisson points in B – and is a
Poisson process with rate (parameter) ν(B). All this reverses: starting with
an e = (e(t) : t ≥ 0) whose counting processes over Borel sets B are Poisson
P (ν(B)), then – as no point can contribute to more than one count over
disjoint sets, disjoint counting processes never jump together, so are inde-
pendent by above, and ϕ :=

∑
t≥0 δ(e(t),t) is a Poisson measure with intensity

µ = ν × dt.
Lévy Processes and the Lévy-Khintchine Formula.

We can now sketch the close link between the general Lévy process on
the one hand and the general infinitely-divisible law given by the Lévy-
Khintchine formula (L-K) on the other.

First, if X = (Xt) is Lévy, the law of each X1 is infinitely divisible, so
given by

E exp{iuX1} = exp{−Ψ(u)} (u ∈ R)

with Ψ a Lévy exponent as in (L−K). Similarly,

E exp{iuXt} = exp{−tΨ(u)} (u ∈ R),

for rational t at first and general t by approximation and càdlàg paths. Then
Ψ is called the Lévy exponent, or characteristic exponent, of the Lévy process
X. Conversely, given a Lévy exponent Ψ(u) as in (L−K), III.7 L24, construct
a Brownian motion as in III.5 L20-22, and an independent Poisson point
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process ∆ = (∆t : t ≥ 0) with characteristic measure µ, the Lévy measure in
(L−K). Then X1(t) := at+ σBt has CF

E exp{iuX1(t)} = exp{−tΨ1(t)} = exp
{
−t(iau+ 1

2
σ2u2)

}
,

giving the non-integral terms in (L−K). For the ‘large’ jumps of ∆, write

∆
(2)
t := ∆t if |∆t| ≥ 1, 0 else.

Then ∆(2) is a Poisson point process with characteristic measure µ(2)(dx) :=
I(|x| ≥ 1)µ(dx). Since

∫
min(1, |x|2)µ(dx) <∞, µ(2) has finite mass, so ∆(2),

a Ppp(µ(2)), is discrete and its counting process

X
(2)
t :=

∑
s≤t

∆(2)
s (t ≥ 0)

is compound Poisson, with Lévy exponent

Ψ(2)(u) =
∫
(1− eiux)I(|x| ≥ 1)µ(dx) =

∫
(1− eiux)µ(2)(dx).

There remain the ‘small jumps’,

∆
(3)
t := ∆t if |∆t| < 1, 0 else.

a Ppp(µ(3)), where µ(3)(dx) = I(|x| < 1)µ(dx), and independent of ∆(2)

because ∆(2), ∆(3) are Poisson point processes that never jump together. For
each ϵ > 0, the ‘compensated sum of jumps’

X
(ϵ,3)
t :=

∑
s≤t

I(ϵ < |∆s| < 1)∆s − t
∫
xI(ϵ < |x| < 1)µ(dx) (t ≥ 0)

is a Lévy process with Lévy exponent

Ψ(ϵ,3)(u) =
∫
(1− eiux + iux)I(ϵ < |x| < 1)µ(dx).

Use of a suitable maximal inequality allows passage to the limit ϵ ↓ 0 (going

from finite to possibly countably infinite sums of jumps): X
(ϵ,3)
t → X

(3)
t , a

Lévy process with Lévy exponent

Ψ(3)(u) =
∫
(1− eiux + iux)I(|x| < 1)µ(dx),
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independent of X(2) and with càdlàg paths. Combining:

Theorem. For a ∈ R, σ ≥ 0,
∫
min(1, |x|2µ(dx) <∞ and

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(|x| < 1)µ(dx),

the construction above yields a Lévy process

X = X(1) +X(2) +X(3)

with Lévy exponent Ψ = Ψ(1) + Ψ(2) + Ψ(3). Here the X(i) are independent
Lévy processes, with Lévy exponents Ψ(i); X(1) is Gaussian, X(2) is a com-
pound Poisson process with jumps of modulus ≥ 1; X(3) is a compensated
sum of jumps of modulus < 1. The jump process ∆X = (∆Xt : t ≥ 0) is a
Ppp(µ), and similarly ∆X(i) is a Ppp(µ(i)) for i = 2, 3.
Subordinators.

We resort to complex numbers in the CF ϕ(u) = E(eiuX) because this al-
ways exists – for all real u – unlike the ostensibly simpler moment-generating
function (MGF) M(u) := E(euX), which may well diverge for some real
u. However, if the random variable X is non-negative, then for s ≥ 0 the
Laplace-Stieltjes transform (LST)

ψ(s) := E[e−sX ] ≤ E(1) = 1

always exists. For X ≥ 0 we have both the CF and the LST to hand, but
the LST is usually simpler to handle. We can pass from CF to LST formally
by taking u = is, and this can be justified by analytic continuation.

Some Lévy processes X have increasing (i.e. non-decreasing) sample
paths; these are called subordinators. From the construction above, sub-
ordinators can have no negative jumps, so µ has support in (0,∞) and no
mass on (−∞, 0). Because increasing functions have FV, one must have
paths of (locally) finite variation, the condition for which can be shown to be∫

min(1, |x|)µ(dx) <∞.

Thus the Lévy exponent must be of the form

Ψ(u) = −idu+
∫ ∞

0
(1− eiux)µ(dx),
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with d ≥ 0. It is more convenient to use the Laplace exponent Φ(s) = Ψ(is):

E (exp{−sXt}) = exp{−tΦ(s)} (s ≥ 0), Φ(s) = ds+
∫ ∞

0
(1−e−sx)µ(dx).

Example. The Stable Subordinator. Here d = 0,Φ(s) = sα, (0 < α < 1),

µ(dx) = dx/(Γ(1− α)xα−1).

The special case α = 1/2 is particularly important: this arises as the first-
passage time of Brownian motion over positive levels, and gives rise to the
Lévy density of Problems 9.
Classification.
IV (Infinite Variation). The sample paths have infinite variation on finite
time-intervals, a.s. This occurs iff

σ > 0 or
∫

min(1, |x|)µ(dx) = ∞.

So take σ = 0 below.
FV (Finite Variation, on finite time-intervals, a.s.).∫

min(1, |x|)µ(dx) <∞.

IA (Infinite Activity). Here there are infinitely many jumps in finite time-
intervals, a.s.: µ has infinite mass, equivalently

∫ 1
−1 µ(dx) = ∞:

µ(R) = ∞.

FA (Finite Activity). Here there are only finitely many jumps in finite time,
a.s., and we are in the compound Poisson case:

µ(R) <∞.
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