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IV. Stochastic integration; Itô calculus.

1. Stochastic Integration
Stochastic integration was introduced by K. Itô in 1944, hence its name

Itô calculus. It gives a meaning to∫ t

0
XdY =

∫ t

0
X(s, ω)dY (s, ω),

for suitable stochastic processes X and Y , the integrand and the integrator.
We shall confine our attention here mainly to the basic case with integrator
Brownian motion: Y = W . Much greater generality is possible; see e.g. [P]
for details.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of Ch. I. For, the Lebesgue-Stieltjes integrals described there have as
integrators the difference of two monotone (increasing) functions, which are
locally of finite variation. But we know from Ch. III that Brownian motion
is of infinite (unbounded) variation on every interval. So Lebesgue-Stieltjes
and Itô integrals must be fundamentally different.

In view of the above, it is quite surprising that Itô integrals can be de-
fined at all. But if we take for granted Itô’s fundamental insight that they
can be, it is obvious how to begin and clear enough how to proceed. We
begin with the simplest possible integrands X, and extend successively much
as we extended the measure-theoretic integral of Ch. I.

Indicators. If X(t, ω) = I[a,b](t), there is exactly one plausible way to define∫
XdW :

∫ t

0
X(s, ω)dW (s, ω) :=


0 if t ≤ a,
W (t)−W (a) if a ≤ t ≤ b,
W (b)−W (a) if t ≥ b.

Simple Functions. Extend by linearity: if X is a linear combination of indi-
cators, X =

∑n
i=1 ciI[ai,bi], we should define∫ t

0
XdW :=

n∑
i=1

ci

∫ t

0
I[ai,bi]dW.
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Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
expressions above.

We begin again, this time calling a stochastic process X simple if there
is a partition 0 = t0 < t1 < . . . < tn = T < ∞ and uniformly bounded
Ftn-measurable random variables ξk (|ξk| ≤ C for all k = 0, . . . , n and ω, for
some C) and if X(t, ω) can be written in the form

X(t, ω) = ξ0(ω)I{0}(t) +
n∑

i=0

ξi(ω)I(ti,ti+1](t) (0 ≤ t ≤ T, ω ∈ Ω).

Then if tk ≤ t < tk+1,

It(X) :=
∫ t
0 XdW =

∑k−1
i=0 ξiW (ti+1)−W (ti)) + ξk(W (t)−W (tk))

=
∑n

i=0 ξi(W (t ∧ ti+1)−W (t ∧ ti)).

Note that by definition I0(X) = 0 a.s. We collect some properties of the
stochastic integral defined so far:

Lemma. (i) It(aX + bY ) = aIt(X) + bIt(Y ).
(ii) E(It(X)|Fs) = Is(X) a.s. (0 ≤ s < t < ∞), hence It(X) is a
continuous martingale.

Proof. (i) follows from the fact that linear combinations of simple functions
are simple.
(ii) There are two cases to consider.
(a) Both s and t belong to the same interval [tk, tk+1). Then

It(X) = Is(X) + ξk(W (t)−W (s)).

But ξk is Ftk-measurable, so Fs-measurable (tk ≤ s), so independent of
W (t)−W (s) (independent increments property of W ). So

E(It(X)|Fs) = Is(X) + ξkE(W (t)−W (s)|Fs) = Is(X).

(b) s < t belongs to a different interval from t: s ∈ [tm, tm+1) for some m < k.
Then

It(X) = Is(X)+ξm(W (tm+1)−W (s))+
k−1∑

i=m+1

ξi(W (ti+1)−W (ti))+ξk(W (t)−W (tk))
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(if k = m + 1, the sum on the right is empty, and does not appear).
Take E(.|Fs) on the right. The first term gives Is(X). The second gives
ξmE[(W (tm+1) −W (s))|Fs] = ξm · 0 = 0, as ξm is Fs-measurable, and simi-
larly so do the third and fourth, completing the proof. //

Note. The stochastic integral for simple integrands is essentially a martingale
transform.

We pause to note a property of square-integrable martingales which we
shall need below. Call M(t) − M(s) the increment of M over (s, t]. Then
for a martingale M , the product of the increments over disjoint intervals has
zero mean. For, if s < t ≤ u < v,

E[(M(v)−M(u))(M(t)−M(s))] = E[E((M(v)−M(u))(M(t)−M(s))|Fu)]

= E[(M(t)−M(s))E((M(v)−M(u))|Fu)],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the left-hand side is zero, as required.

We now can add further properties of the stochastic integral for simple
functions X.

Lemma. (i) We have the Itô isometry

E[(It(X))2], or E[(
∫ t

0
XdW )2],= E(

∫ t

0
X(s)2ds).

(ii) E((It(X)− Is(X))2|Fs) = E(
∫ t
s X(u)2du) a.s.

Proof. We only show (i); the proof of (ii) is similar. The left-hand side in (i)
above is E(It(X) · It(X)), i.e.

E([
k−1∑
i=0

ξi(W (ti+1)−W (ti)) + ξk(W (t)−W (tk))]
2).

Expanding out the square, the cross-terms have expectation zero by above,
leaving

E(
k−1∑
i=0

ξ2i (W (ti+1)−W (ti))
2 + ξ2k(W (t)−W (tk))

2).
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Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(W (ti+1)−W (ti)) =
ti+1 − ti. So we obtain

k−1∑
i=0

E(ξ2i )(ti+1 − ti) + E(ξ2k)(t− tk).

This is (using Fubini’s theorem)
∫ t
0 E(X(u)2)du = E(

∫ t
0 X(u)2du), as re-

quired. //

The Itô isometry above suggests that
∫ t
0 XdW should be defined only for

processes with ∫ t

0
E(X(u)2)du < ∞ for all t. (∗)

We then can transfer convergence on a suitable L2-space of stochastic pro-
cesses to a suitable L2-space of martingales. This gives us an L2-theory of
stochastic integration, for which Hilbert-space methods are available.

Approximation. By analogy with the integral of Ch. I, we seek a class of
integrands suitably approximable by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of (B([0,∞))×F)-measurable,
(Ft)- adapted processes X with

∫ t
0 E(X(u)2)du < ∞ for all t > 0 as in (∗).

(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t
0 XdW may be defined as the

limit of It(Xn) =
∫ t
0 XndW .

(iii) The properties from both lemmas above remain true for the stochastic
integral

∫ t
0 XdW defined by (i) and (ii).

We must omit detailed proofs of these assertions here. The key technical
ingredients needed are Hilbert-space methods in spaces defined by integrals
related to the quadratic variation of the integrator (which is just t in our
Brownian motion setting here) and the Kunita-Watanabe inequalities ([P],
61).

Without (∗), the stochastic integral need not yield a mg, but only a local
martingale. This is a process M such that there exists a sequence of stop-
ping times Tn ↑ +∞ such that each of the stopped and shifted processes
MTn − M0 is a (true) martingale. Local mgs are much more general than
(true) mgs. They are used to define semi-martingales – sums of a local mg
and a FV process; these are the most general stochastic integrators [L27, L30].
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