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Lecture 17. 10.3.2011

Ezxample. We calculate [ W (u)dW (u). We start by approximating the inte-
grand by a sequence of simple functions.

W(0)=0 it  0<u<t/n,

W(t/n if n<u n,
X =1 (t/n) ; t/n <u<2t

W((n—1)t/n) it  (n—1Dt/n<u<t.

By definition,

n—1

/Ot W (u)dW (u) = lim Z_: W(kt/n)(W((k+ 1)t/n) — W(kt/n)).

Replacing W (kt/n) by 5(W((k + 1)t/n) + W(kt/n)) — 3(W((k + 1)t/n) —
W (kt/n)), the RHS is

> ;(W((k + D)t/n) + W(kt/n)).(W((k + 1)t/n) — W(kt/n))

= ;(W((k + D)t/n) — W(kt/n)).(W((k+ 1)t/n) — W(kt/n)).

The first sum is 3 (W ((k + 1)t/n)? — W (kt/n)?), which telescopes (as a
sum of differences) to W ()% (W(0) = 0). The second sum is

s (W(k+1)t/n) =W (kt/n))?, an approximation to the quadratic variation
of W on [0, ¢], which tends to %t by Lévy’s theorem on the QV. Combining,

/ W () A () = ;W(t)Q _ ;t.

Note the contrast with ordinary (Newton-Leibniz) calculus! It6 calculus re-
quires the second term on the right — the Ito correction term — which arises
from the quadratic variation of W.

One can construct a closely analogous theory for stochastic integrals with
the Brownian integrator W above replaced by a square-integrable martingale
integrator M. The properties above hold, with the Lemma (i) replaced by

B[ XM ()] = B[ X (@)d(u)(w)
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The natural class of integrands X to use here is the class of predictable pro-
cesses (a slight extension of left-continuity of sample paths).

Quadratic Variation, Quadratic Covariation. We shall need to extend quadratic
variation and quadratic covariation to stochastic integrals. The quadratic
variation of I,(X) = [ X (u)dW (u) is [t X(u)?du. This is proved in the
same way as the case X = 1, that W has quadratic variation process t.
More generally, if Z(t) = [y X(u)dM (u) for a continuous martingale inte-
grator M, then (Z)(t) = i X?(u)d(M)(u). Similarly (or by polarization), if
Zi(t) = Jo Xi(w)dM;(u) (i = 1,2), (Z1, Za)(t) = Joy X1(u)Xo(u)d(My, Ma)(u).

Semi-martingales.
It turns out that semi-martingales give the natural class of stochastic
integrators: one can define the stochastic integral

/Ot H(u)dX (u) = /(: H(u)dM (u) + /Ot H(uw)dA(u)

for predictable integrands H (as above), and for semi-martingale integrators
X — but for no larger class of integrators, if one is to preserve reasonable
convergence and approximation properties for the operation of stochastic in-
tegration. For details, see e.g. [P].

With integrands as general as above, stochastic integrals are no longer
martingales in general, but only local martingales (see e.g. [P]: martingales on
each [0,T},], for some sequence of stopping times 7,, 1 oc0). For our purposes,
one loses little by thinking of bounded integrands (recall that we usually
have a finite time horizon 7', the expiry time of an option, and that bounded
processes are locally integrable, but not integrable in general).

2. Ité’s Lemma
Suppose that b is adapted and locally integrable (so [ b(s)ds is defined
as an ordinary integral, as in Ch. I), and o is adapted and measurable

with [§ E(o(u)?)du < oo for all t (so [y o(s)dW (s) is defined as a stochastic
integral, as above). Then

t t
X(t) := xg —i—/ b(s)ds +/ o(s)dW (s)
0 0
defines a stochastic process X with X (0) = x¢ (which is often called an It6
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process). It is customary, and convenient, to express such an equation sym-
bolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt + o()dW (1),  X(0) = wo. (%)

Now suppose f : R — R is of class C?. The question arises of giving a
meaning to the stochastic differential df (X (¢)) of the process f(X(t)), and
finding it. Given a partition P of [0,¢], i.e. 0 =ty < t; < ... < {t, =1, we
can use Taylor’s formula to obtain

n—1

FX(®) = f(X(0)) = > f(X(tes1)) — F(X (t))

k=0

— Zf (te))AX () + = Zf” (tr) + 0 AX (1)) (AX (1))
with 0 < 6 < 1. We know that Z(AX(tk))2 — (X)(t) in probability (so,
taking a subsequence, with probability one), and a little more effort gives
n—1 t
> (X () + O AX (t))(AX (1)) — /0 S () d(X) (u).

k=0

The first sum is easily recognized as an approximating sequence of a stochas-
tic integral (compare the example above), giving

n—1

S PXE)AX ()~ [ f(X )X ()

k=0

Theorem (Basic It6 Formula). If X has stochastic differential given by
(x) and f € C?, then f(X) has stochastic differential

X)) = FXOWXO) + 5 (KON ),
or writing out the integrals,
FXO) = flao) + [ PO @)+ 5 [ 170X w).

More generally, suppose that f : R?> — R is a function, continuously
differentiable once in its first argument (which will denote time), and twice in
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its second argument (space): f € C'2. By the Taylor expansion of a smooth
function of several variables we get for t close to ¢y, (we use subscripts to

denote partial derivatives: f, := 0f/0t, fi, := 0 f/0tOx):
fE, X () = [flto, X(to))
+(t = o) fe(to, X (to)) + (X(t) — X (o)) fo(to, X (o))
+5(t = t0)* fulto, X (to)) + 3(X () — X (t0))* faa(to, X (t0))
+H(t = 10)(X (1) = X (o)) fralto, X (t0)) + - -,
which may be written symbolically as

1 1
df = fidt + fdX + iftt(dt)Q + fzdtd X + §fm(dX)2 +

In this, we substitute dX (t) = b(t)dt + o(t)dW (t) from above, to obtain
df = fudt + fo(bdt + odW)
+1 fudt)? + frdt(bdt + odW) + 3 fou(bdt + cdW)? +

Now using the formal multiplication rules dt-dt = 0, dt-dW = 0,dW-dW = dt
(which are just shorthand for the corresponding properties of the quadratic
variations), we expand

(bdt + odW)? = o*dt + 2bodtdW + b*(dt)* = odt + higher-order terms
to get finally
1
df = (ft +bf, + 2J2fm) dt + o f,dW + higher-order terms.

As above, the higher-order terms are irrelevant, and summarizing, we obtain
Ito’s lemma, the analogue for the Ito or stochastic calculus of the chain rule
for ordinary (Newton-Leibniz) calculus:

Theorem (It6’s Lemma). If X (¢) has stochastic differential given by (%),
then f = f(t, X(t)) has stochastic differential

1
df = (ft L of + 202fm> dt + o f,dW.
That is, writing fy for f(0, o), the initial value of f,

f=ro+ /Ot(ft +bf. + ;azfm)dt + /Ot o fdW.



