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Example. We calculate
∫
W (u)dW (u). We start by approximating the inte-

grand by a sequence of simple functions.

Xn(u) =


W (0) = 0 if 0 ≤ u ≤ t/n,
W (t/n) if t/n < u ≤ 2t/n,
...

...
W ((n− 1)t/n) if (n− 1)t/n < u ≤ t.

By definition,

∫ t

0
W (u)dW (u) = lim

n→∞

n−1∑
k=0

W (kt/n)(W ((k + 1)t/n)−W (kt/n)).

Replacing W (kt/n) by 1
2
(W ((k + 1)t/n) + W (kt/n)) − 1

2
(W ((k + 1)t/n) −

W (kt/n)), the RHS is

∑ 1

2
(W ((k + 1)t/n) +W (kt/n)).(W ((k + 1)t/n)−W (kt/n))

−
∑ 1

2
(W ((k + 1)t/n)−W (kt/n)).(W ((k + 1)t/n)−W (kt/n)).

The first sum is
∑ 1

2
(W ((k + 1)t/n)2 − W (kt/n)2), which telescopes (as a

sum of differences) to 1
2
W (t)2 (W (0) = 0). The second sum is

1
2

∑
(W (k+1)t/n)−W (kt/n))2, an approximation to the quadratic variation

of W on [0, t], which tends to 1
2
t by Lévy’s theorem on the QV. Combining,∫ t

0
W (u)dW (u) =

1

2
W (t)2 − 1

2
t.

Note the contrast with ordinary (Newton-Leibniz) calculus! Itô calculus re-
quires the second term on the right – the Itô correction term – which arises
from the quadratic variation of W .

One can construct a closely analogous theory for stochastic integrals with
the Brownian integrator W above replaced by a square-integrable martingale
integrator M . The properties above hold, with the Lemma (i) replaced by

E[(
∫ t

0
X(u)dM(u))2] = E[

∫ t

0
X(u)2d⟨M⟩(u)].
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The natural class of integrands X to use here is the class of predictable pro-
cesses (a slight extension of left-continuity of sample paths).

Quadratic Variation, Quadratic Covariation. We shall need to extend quadratic
variation and quadratic covariation to stochastic integrals. The quadratic
variation of It(X) =

∫ t
0 X(u)dW (u) is

∫ t
0 X(u)2du. This is proved in the

same way as the case X ≡ 1, that W has quadratic variation process t.
More generally, if Z(t) =

∫ t
0 X(u)dM(u) for a continuous martingale inte-

grator M , then ⟨Z⟩(t) =
∫ t
0 X

2(u)d⟨M⟩(u). Similarly (or by polarization), if
Zi(t) =

∫ t
0 Xi(u)dMi(u) (i = 1, 2), ⟨Z1, Z2⟩(t) =

∫ t
0 X1(u)X2(u)d⟨M1,M2⟩(u).

Semi-martingales.
It turns out that semi-martingales give the natural class of stochastic

integrators: one can define the stochastic integral∫ t

0
H(u)dX(u) =

∫ t

0
H(u)dM(u) +

∫ t

0
H(u)dA(u)

for predictable integrands H (as above), and for semi-martingale integrators
X – but for no larger class of integrators, if one is to preserve reasonable
convergence and approximation properties for the operation of stochastic in-
tegration. For details, see e.g. [P].

With integrands as general as above, stochastic integrals are no longer
martingales in general, but only local martingales (see e.g. [P]: martingales on
each [0, Tn], for some sequence of stopping times Tn ↑ ∞). For our purposes,
one loses little by thinking of bounded integrands (recall that we usually
have a finite time horizon T , the expiry time of an option, and that bounded
processes are locally integrable, but not integrable in general).

2. Itô’s Lemma

Suppose that b is adapted and locally integrable (so
∫ t
0 b(s)ds is defined

as an ordinary integral, as in Ch. I), and σ is adapted and measurable
with

∫ t
0 E(σ(u)2)du < ∞ for all t (so

∫ t
0 σ(s)dW (s) is defined as a stochastic

integral, as above). Then

X(t) := x0 +
∫ t

0
b(s)ds+

∫ t

0
σ(s)dW (s)

defines a stochastic process X with X(0) = x0 (which is often called an Itô
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process). It is customary, and convenient, to express such an equation sym-
bolically in differential form, in terms of the stochastic differential equation

dX(t) = b(t)dt+ σ(t)dW (t), X(0) = x0. (∗)

Now suppose f : R → R is of class C2. The question arises of giving a
meaning to the stochastic differential df(X(t)) of the process f(X(t)), and
finding it. Given a partition P of [0, t], i.e. 0 = t0 < t1 < . . . < tn = t, we
can use Taylor’s formula to obtain

f(X(t))− f(X(0)) =
n−1∑
k=0

f(X(tk+1))− f(X(tk))

=
n−1∑
k=0

f ′(X(tk))∆X(tk) +
1

2

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))
2

with 0 < θk < 1. We know that
∑
(∆X(tk))

2 → ⟨X⟩(t) in probability (so,
taking a subsequence, with probability one), and a little more effort gives

n−1∑
k=0

f ′′(X(tk) + θk∆X(tk))(∆X(tk))
2 →

∫ t

0
f ′′(X(u))d⟨X⟩(u).

The first sum is easily recognized as an approximating sequence of a stochas-
tic integral (compare the example above), giving

n−1∑
k=0

f ′(X(tk))∆X(tk) →
∫ t

0
f ′(X(u))dX(u) :

Theorem (Basic Itô Formula). If X has stochastic differential given by
(∗) and f ∈ C2, then f(X) has stochastic differential

df(X(t)) = f ′(X(t))dX(t) +
1

2
f ′′(X(t))d⟨X⟩(t),

or writing out the integrals,

f(X(t)) = f(x0) +
∫ t

0
f ′(X(u))dX(u) +

1

2

∫ t

0
f ′′(X(u))d⟨X⟩(u).

More generally, suppose that f : R2 → R is a function, continuously
differentiable once in its first argument (which will denote time), and twice in
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its second argument (space): f ∈ C1,2. By the Taylor expansion of a smooth
function of several variables we get for t close to t0 (we use subscripts to
denote partial derivatives: ft := ∂f/∂t, ftx := ∂2f/∂t∂x):

f(t,X(t)) = f(t0, X(t0))

+(t− t0)ft(t0, X(t0)) + (X(t)−X(t0))fx(t0, X(t0))

+1
2
(t− t0)

2ftt(t0, X(t0)) +
1
2
(X(t)−X(t0))

2fxx(t0, X(t0))

+(t− t0)(X(t)−X(t0))ftx(t0, X(t0)) + . . . ,

which may be written symbolically as

df = ftdt+ fxdX +
1

2
ftt(dt)

2 + ftxdtdX +
1

2
fxx(dX)2 + . . . .

In this, we substitute dX(t) = b(t)dt+ σ(t)dW (t) from above, to obtain

df = ftdt+ fx(bdt+ σdW )

+1
2
ftt(dt)

2 + ftxdt(bdt+ σdW ) + 1
2
fxx(bdt+ σdW )2 + . . .

Now using the formal multiplication rules dt·dt = 0, dt·dW = 0, dW ·dW = dt
(which are just shorthand for the corresponding properties of the quadratic
variations), we expand

(bdt+ σdW )2 = σ2dt+ 2bσdtdW + b2(dt)2 = σ2dt+ higher-order terms

to get finally

df =
(
ft + bfx +

1

2
σ2fxx

)
dt+ σfxdW + higher-order terms.

As above, the higher-order terms are irrelevant, and summarizing, we obtain
Itô’s lemma, the analogue for the Itô or stochastic calculus of the chain rule
for ordinary (Newton-Leibniz) calculus:

Theorem (Itô’s Lemma). If X(t) has stochastic differential given by (∗),
then f = f(t,X(t)) has stochastic differential

df =
(
ft + bfx +

1

2
σ2fxx

)
dt+ σfxdW.

That is, writing f0 for f(0, x0), the initial value of f ,

f = f0 +
∫ t

0
(ft + bfx +

1

2
σ2fxx)dt+

∫ t

0
σfxdW.
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