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Corollary. E(f(t,X(t))) = f0 +
∫ t
0 E(ft + bfx +

1
2
σ2fxx)dt.

Proof.
∫ t
0 σf2dW is a stochastic integral, so a (local) martingale, so its ex-

pectation is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, Itô’s lemma really comes into
its own in the more general setting of semi-martingales (of which X above is
an important example). It says there that if X is a semi-martingale and f is
a smooth function as above, then f(t,X(t)) is also a semi-martingale. The
ordinary differential dt gives rise to the finite-variation part, the stochastic
differential gives rise to the martingale part. This closure property under
very general non-linear operations is very powerful and important.

Itô Lemma in Higher Dimensions. If f(t, x1, . . . , xd) is C1 in its zeroth
(time) argument t and C2 in its remaining d space arguments xi, and M =
(M1, . . . ,Md) is a continuous vector martingale, then (writing fi, fij for the
first partial derivatives of f with respect to its ith argument and the second
partial derivatives with respect to the ith and jth arguments) f(t,M(t)) has
stochastic differential

df(t,M(t)) = f0(t,M(t))dt+
d∑

i=1

fi(t,M(t))dMi(t)+
1

2

d∑
i,j=1

fij(t,M(t))d⟨Mi,Mj⟩(t).

Application. The case f(x) = x2 gives

W (t)2 = W (0)2 +
∫ t

0
2W (u)dW (u) +

1

2

∫ t

0
2du,

which after rearranging is just our earlier example.

3. Geometric Brownian Motion

Now that we have both Brownian motion W and Itô’s Lemma to hand,
we can introduce the most important stochastic process for us, a relative of
Brownian motion – geometric (or exponential, or economic) Brownian mo-
tion.
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To model the stock-price evolution, we use the stochastic differential equa-
tion

dS(t) = S(t)(µdt+ σdW (t)), S(0) > 0,

due to Itô in 1944. (Interpretation [see handout]: the return dS/S over a
short time-interval is the sum of the deterministic term µdt and the random
term σdW .) This corrects Bachelier’s earlier attempt of 1900 (he did not have
the factor S(t) on the right - missing the interpretation in terms of returns,
and leading to negative stock prices!) Incidentally, Bachelier’s work served as
Itô’s motivation in introducing Itô calculus. The mathematical importance
of Itô’s work was recognised early, and led on to the work of Doob in 1953 [D],
Meyer (1960s on) and many others. The economic importance of geometric
Brownian motion was recognized by Paul A. Samuelson in his work from 1965
on, for which Samuelson received the Nobel Prize in Economics in 1970, and
by Robert Merton, in work for which he was similarly honoured in 1997.

The differential equation above has the unique solution

S(t) = S(0) exp
{(

µ− 1

2
σ2
)
t+ σdW (t)

}
.

For, writing

f(t, x) := exp
{(

µ− 1

2
σ2
)
t+ σx

}
,

we have

ft =
(
µ− 1

2
σ2
)
f, fx = σf, fxx = σ2f,

and with x = W (t), one has

dx = dW (t), (dx)2 = dt.

Thus Itô’s lemma gives

df(t,W (t)) = ftdt+ fxdW (t) + 1
2
fxx(dW (t))2

= f
((
µ− 1

2
σ2
)
dt+ σdW (t) + 1

2
σ2dt

)
= f(µdt+ σdW (t)),

so f(t,W (t)) is a solution of the stochastic differential equation, and the ini-
tial condition f(0,W (0)) = S(0) as W (0) = 0, giving existence.
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For uniqueness, we need the stochastic (or Doléans, or Doléans-Dade) ex-
ponential (below), giving Y = E(X) = exp{X− 1

2
⟨X⟩} (with X a continuous

semi-martingale) as the unique solution to the stochastic differential equation

dY (t) = Y (t−)dX(t), Y (0) = 1.

(Incidentally, this is one of the few cases where a stochastic differential equa-
tion can be solved explicitly. Usually we must be content with an existence
and uniqueness statement, and a numerical algorithm for calculating the solu-
tion.) Thus S(t) above is the stochastic exponential of µt+σW (t), Brownian
motion with mean (or drift) µ and variance (or volatility) σ2. In particular,

logS(t) = logS(0) +
(
µ− 1

2
σ2
)
t+ σW (t)

has a normal distribution. Thus S(t) itself has a lognormal distribution. This
geometric Brownian motion model, and the log-normal distribution that it
entails, are the basis for the Black-Scholes model for stock-price dynamics in
continuous time.

4. Stochastic Calculus for Black-Scholes Models; Girsanov’s theo-
rem

In this section we collect the main tools for the analysis of financial mar-
kets with uncertainty modelled by Brownian motions.

Consider first independentN(0, 1) random variables Z1, . . . , Zn on a prob-
ability space (Ω,F ,P). Given a vector γ = (γ1, . . . , γn), consider a new
probability measure Q on (Ω,F) defined by

Q(dω) = exp

{
n∑

i=1

γiZi(ω)−
1

2

n∑
i=1

γ2
i

}
P (dω).

As exp{.} > 0 and integrates to 1, as
∫
exp{γiZi}dP = exp{1

2
γ2
i }, this is a

probability measure. It is also equivalent to P (has the same null sets), again
as the exponential term is positive. Also

Q(Zi ∈ dzi, i = 1, . . . , n) = exp

{
n∑

i=1

γiZi −
1

2

n∑
i=1

γ2
i

}
P (Zi ∈ dzi, i = 1, . . . , n)

= (2π)−n/2 exp

{
n∑

i=1

γizi −
1

2

n∑
i=1

γ2
i −

1

2

n∑
i=1

z2i

}
n∏

i=1

dzi

3



= (2π)−n/2 exp

{
−1

2

n∑
i=1

(zi − γi)
2

}
dz1 . . . dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(γi, 1) under Q. Thus the effect of the change of measure P → Q,
from the original measure P to the equivalent measure Q, is to change the
mean, from 0 = (0, . . . , 0) to γ = (γ1, . . . , γn).

This result extends to infinitely many dimensions. Let W = (W1, . . .Wd)
be a d-dimensional Brownian motion defined on a stochastic basis with the
filtration satisfying the usual conditions. Let (γ(t) : 0 ≤ t ≤ T ) be a measur-
able, adapted d-dimensional process with

∫ T
0 γi(t)

2dt < ∞ a.s., i = 1, . . . , d,
and define the process (L(t) : 0 ≤ t ≤ T ) by

L(t) = exp
{
−
∫ t

0
γ(s)′dW (s)− 1

2

∫ t

0
∥γ(s)2∥ds

}
.

Then L is continuous, and, being the stochastic exponential of−
∫ t
0 γ(s)

′dW (s),
is a local martingale. Given sufficient integrability on the process γ, L will
in fact be a (continuous) martingale. For this, Novikov’s condition suffices:

E

(
exp

{
1

2

∫ T

0
∥γ(s)2∥ds

})
< ∞.

We are now in the position to state a version of Girsanov’s theorem, which
is one of the main tools in studying continuous-time financial market models.

Theorem (Girsanov). Let γ be as above and satisfy Novikov’s condition;
let L be the corresponding continuous martingale. Define the processes W̃i,
i = 1, . . . , d by

W̃i(t) := Wi(t) +
∫ t

0
γi(s)ds, (0 ≤ t ≤ T ), i = 1, . . . , d.

Then under the equivalent probability measure Q defined on (Ω,FT ) with
Radon-Nikodym derivative

dQ

dP
= L(T ),

the process W̃ = (W̃1, . . . , W̃d) is d-dimensional Brownian motion.
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