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3. Measures.
Following Lebesgue (1902), our next task is to study the mathematics of

length, area and volume (in Euclidean space of dimensions 1, 2, 3, under-
stood). It turns out that to do this, we actually do much more.

Length/area/volume is non-negative, and defined on classes of sets (as in
L2) – intervals/rectangles/cuboids in the first instance. The whole of Eu-
clidean space has infinite length/area/volume, so we allow the value +∞.
Defn. A measure µ on a σ-algebra A of subsets of a set Ω is a set-valued
function µ : A → [0,∞] such that
(i) µ(∅) = 0;
(ii) If An (n = 1, 2, . . .) are disjoint sets in A, then

µ(
∪∞

n=1
An) =

∞∑
n=1

µ(An). (ca)

Defn. We then call (Ω,A) a measurable space, and (Ω,A, µ) a measure space.
The sets A ∈ A (for which µ(A) is defined, as µ : A → [0,∞]) are called the
µ-measurable sets.

If µ(Ω) < ∞, we call the measure finite. If Ω =
∪∞

n=1 An with An ∈ S
increasing (An ⊂ An+1) and each µ(An) < ∞, we call µ σ-finite.

If µ(Ω) = 1, we call µ a probability measure, or probability for short, and
(Ω,A, µ) a probability space.

If µ satisfies (i) and (ii) but A is not a σ-algebra, we call µ a pre-measure
on A.
Note. If in (ii) we only take A as a field, rather than a σ-field, and corre-
spondingly only ask for µ to add over disjoint unions of two sets –

µ(A1 ∪ A2) = µ(A1) + µ(A2)

for A1, A2 disjoint sets in A, then using induction we can obtain

µ(
∪N

n=1
An) =

N∑
n=1

µ(An) (fa)

for any finite sequence of disjoint sets An ∈ A. This property is called finite
additivity, while (ii) above is called countable additivity (whence the names
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(fa) and (ca)). Of course countable additivity is a stronger assumption than
finite additivity (ca implies fa, but not conversely – note that one cannot
use induction to get from N in (fa) to ∞ in (ca), as ∞ is not a positive
integer), and of course stronger assumptions lead to stronger conclusions, or
theorems. In Measure Theory, following Lebesgue and most later authors,
we shall assume ca. But it is possible to build a theory instead on fa; for a
recent comparison between the two, see
N. H. BINGHAM, Finite additivity versus countable additivity, Electronic
Journal for the History of Probability and Statistics vol. 6 no. 1 (2010), 35p
[www.jehps.net].

On the line, the length of an interval (a, b] is µ((a, b]) := b − a. How
can we extend this formula to wider classes of sets – preferably, to as wide a
class of sets as possible – while preserving the countable additivity property
ca? The idea is to use small, easy-to-visualize classes of sets (such as the
half-open intervals above) as generators G and build up systematically from
there. It turns out that we need a class G to have certain properties for it to
be suitable for such a purpose.
Defn. A class S is a semi-ring if
(i) ∅ ∈ S;
(ii) S is closed under intersections: if A1, A2 ∈ S, then A1 ∩ A2 ∈ S;
(iii) if A,B ∈ S, the set-theoretic difference A \ B is a finite disjoint union
of sets in S.

The motivating example here is the class of half-open intervals on the
line, or its analogue in higher dimensions. On the line, the intersection of
two half-open intervals is empty or again a half-open interval; the difference
of two half-open intervals is empty, one or the disjoint union of two half-open
intervals. Similarly in the plane: the difference of two half-open rectangles
is a disjoint union of at most 8 (= 32 − 1) half-open rectangles (draw a
picture). Similarly in 3-space: the difference of two half-open cuboids is a
disjoint union of at most 26 = 33 − 1 half-open cuboids, etc. (again, draw a
picture – but pictures of 3-dimensional situations are harder to draw!) Sim-
ilarly in d dimensions (where we draw pictures ‘as if d = 3′).

The main result of Measure Theory is Carathéodory’s Extension Theo-
rem (Constantin Carathéodory (1873-1950), in his book of 1914). We quote
this below; for details of the proof, see e.g. [S], Ch. 6.

Theorem (Carathéodory’s Extension Theorem). Let S be a semi-ring
of subsets of a set Ω, and µ : S → [0,∞] a pre-measure, i.e. µ(∅) = 0, and if
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An are disjoint sets in S, then

µ(
∞∪
n=1

An) =
∞∑
n=1

µ(An).

Then µ can be extended to a measure (also called µ) on the σ-algebra σ(S)
generated by S. This extension is unique if µ is σ-finite.

We include only a sketch proof, following Schilling’s account [S].
For an arbitrary subset A of Ω, define

µ∗(A) := inf{
∑

µ(Sn)},

where the infimum extends over all coverings of A by sequences of sets Sn ∈ S
(i.e. A ⊂ ∪

Sn).
Step 1. (i) µ∗ vanishes on the empty set:

µ∗(∅) = 0; (OM1)

(ii) µ∗ is monotone: if A ⊂ B, then

µ∗(A) ≤ µ∗(B); (OM2)

(iii) µ∗ is σ-subadditive:

µ∗(
∪

An) ≤
∑

µ∗(An). (OM3)

We summarize (OM1) − (OM3) by saying that µ∗ is an outer measure
(whence (OM)).
Step 2. µ∗ extends µ – i.e., agrees with µ on the sets in S on which they are
both defined (but is itself defined on all sets in Ω).
Step 3. Write A∗ for the class of µ∗-measurable sets, i.e. the sets A ⊂ Ω for
which

µ∗(B) = µ∗(B ∩ A) + µ∗(B \ A)

for all sets B in Ω. Then S ⊂ A∗.
Step 4. A∗ is a σ-algebra, and µ∗ is a measure on (Ω,A∗).
Step 5. µ∗ is a measure on σ(S) (⊂ A∗).
Step 6. This extension is unique if µ is σ-finite.
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Lebesgue measure.
On the line, the measure λ defined on the semi-ring of half-open intervals

by
λ((a, b]) := b− a

is called Lebesgue measure on the line. It generalizes length. Similarly, its
analogue for 2 dimensions,

λ((a1, b1]× (a2, b2]) := (b1 − a1)(b2 − a2),

generalizes area, that for 3 dimensions volume, and that for d dimensions,

λ(×d
i=1) :=

d∏
i−1

(bi − ai)

‘hyper-volume’, or volume for short. We call them all Lebesgue measure, and
denote them all by λ (or λd if we need to display the dimension).

Note that by its definition λ is translation-invariant: if A is an inter-
val/rectangle/cuboid etc., and A+ h := {x+ h : x ∈ A}, then

λ(A+ h) = λ(A).

Such translation-invariant measures can be defined more generally in topo-
logical groups, giving Haar measure (Alfred HAAR (1885-1933), in 1933).

Completion.
Not all sets have a Lebesgue measure! – see below. But, if B has

Lebesgue measure λ(B) = 0, and A ⊂ B, it would seem natural to say
that λ(A) = 0 also – a subset of a set of length/area/volume 0 should also
have length/area/volume 0.

Call a set A µ-null (or just null) if µ(A) = 0. Call a measure space
(Ω,A, µ) complete if the σ-field A of µ-measurable sets contains all subsets
of null sets. It turns out that given a measure µ on a σ-field A, one can
always extend µ to a larger σ-field – the σ-field A∗ generated by the sets in
A and the null sets N . These are the sets of the form A∆N with A ∈ A
(i.e., A µ-measurable) and N null; the extension is given for such sets by

µ(A∆N) := µ(A).

For details, see e.g. [S], 29, 46.
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