
spl30.tex
Lecture 30. 16.12.2011.

The Ornstein-Uhlenbeck Process. The most important example of a stochas-
tic differential equation for us is that for geometric Brownian motion. We
close here with another example.

Consider a model of the velocity V (t) of a particle at time t (V (0) = v0),
moving through a fluid or gas, which exerts a force on the particle consisting
of:
(i) a frictional drag, assumed proportional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas.
The basic model for processes of this type is given by the (linear) stochastic
differential equation

dV = −βV dt+ σdW,

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
σ2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) (this is
the classical Maxwell-Boltzmann distribution of statistical mechanics) and
whose limiting correlation function is e−β|.|.

If we integrate the Ornstein-Uhlenbeck velocity process to get the Ornstein-
Uhlenbeck displacement process, we lose the Markov property (though the
process is still Gaussian). Being non-Markov, the resulting process is much
more difficult to analyze.

The Ornstein-Uhlenbeck process is important in many areas, including:
(i) statistical mechanics, where it originated,
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates.

We solve the stochastic differential equation. We know that e−βt solves
the corresponding homogeneous DE dV = −βV dt. So by variation of pa-
rameters, take a trial solution V = Ce−βt. Then

dV = −βCe−βtdt+ e−βtdC = −βV dt+ e−βtdC,

so V is a solution of (OU) if e−βtdC = σdW , dC = σeβtdW , C = c +∫ t
0 e

βudW . So with initial velocity v0,

V = v0e
−βt + σe−βt

∫ t

0
eβudWu.
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This approach to solving linear SDEs can be generalized.

6. Semi-martingales.
The martingale concept, though crucial, is a little too restrictive, and

one needs to generalize it. We will be brief here. First, a local martingale
M = (M(t)) is a process such that, for some sequence of stopping times
Sn → ∞, each stopped process M (n) = (M(t ∧ Sn)) is a martingale. This
localization idea can be applied elsewhere: a process (A(t)) (adapted to our
filtration, understood) is locally of finite variation if each (A(t∧Sn)) is of finite
variation for some sequence of stopping times Sn → ∞. A semi-martingale
(Meyer, 1976) is a process (X(t)) expressible as

X(t) = M(t) + A(t)

with (M(t)) a local martingale and (A(t)) locally of finite variation (the con-
cept is due to Meyer).

Lévy Processes as Semi-martingales. The Gaussian component X(1) is a
martingale; so too is the compensated sum of (small) jumps process X(3),
while the sum of large jumps process X(2) is (locally) of finite variation, be-
ing compound Poisson. Thus a Lévy process X = X(1) + X(2) + X(3) is a
semi-martingale. Indeed, Lévy processes are the prototypes, and motivating
examples, of semi-martingales. The natural domain of stochastic integration
is predictable integrands and semi-martingale integrators. Thus, stochastic
integration works with a general Lévy process as integrator. Here, however,
the theory simplifies considerably.

Previsible (= Predictable) Processes. The crucial difference between left-
continuous (e.g., càglàd) functions and right-continuous (e.g., càdlàg) ones is
that with left- continuity, one can ‘predict’ the value at t - ‘see it coming’ -
knowing the values before t.

We write P, called the predictable (or previsible) σ-algebra, for the σ-
algebra on R+ × Ω (R+ for time t ≥ 0, Ω for randomness ω ∈ Ω - we need
both for a stochastic process X = (X(t, ω))) for the σ-field generated by (=
smallest σ-field containing) the adapted càglàd processes. (We shall almost
always be dealing with adapted processes, so the operative thing here is the
left-continuity.) We also write X ∈ P as shorthand for ‘the process X is
P-measurable’, and X ∈ bP if also X is bounded.
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Predictability and Semi-Martingales. Let us confess here why we need to
introduce the last two concepts. One can develop a theory of stochastic inte-
grals,

∫ t
0 H(s, ω)dM(s, ω) or

∫ t
0 HsdMs, where H, M are stochastic processes

and the integrator M is a semimartingale, the integrand H is previsible (and
bounded, or L2, or whatever). This can be done; see e.g. [P] for details.
More: this theory is the most general theory of stochastic integration possi-
ble, if one demands even reasonably good properties (appropriate behaviour
under passage to the limit, for example). For emphasis:

Integrands: previsible; Integrators: semimartingales.

Prototype: H is left-continuous (and bounded, or L2, etc.); M is Brownian
motion.
Economic Interpretation. Think of the integrator M as, e.g., a stock-price
process. The increments over [t, t+u] (u > 0, small) represent ‘new informa-
tion’. Think of the integrand H as the amount of stock held. The investor
has no advance warning of the price change Mt+dt −Mt over the immediate
future [t, t + dt], but has to commit himself on the basis of what he knows
already. So H needs to be predictable at H before t (e.g., left- continuity will
do), hence predictability of integrands. By contrast, Mt+dt −Mt represents
new price-sensitive information, or ‘driving noise’. The value process of the
portfolio is the limit of sums of terms such as Ht−(Mt+dt−Mt), the stochastic
integral

∫ t
0 HsdMs. This is the continuous-time analogue of the martingale

transform in discrete time (III.2).

Poisson Stochastic Calculus. Recall that the prototypes of Lévy processes
are Brownian motion and the Poisson process, also that the essence of Itô
calculus for BM is (dWt)

2 = dt. Now the Poisson process N is a point pro-
cess with jumps of size 1, so (dNt)

2 = dNt (both sides are 1 at a jump and
0 elsewhere). This suggests that a Poisson-based stochastic calculus can be
developed, and indeed it can.

Lévy stochastic calculus. With both Brownian and Poissonian calculus to
hand, this suggests that stochastic calculus for Lévy processes can be de-
veloped – and indeed it can. For, Lévy processes are semimartingales, and
we saw above that stochastic calculus has as its natural domain that of
predictable integrands and semimartingale integrators. The resulting Lévy
calculus is very flexible and useful, but we cannot develop it here. It extends
Black-Scholes theory to allow prices to have jumps, which they do in reality
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if looked at closely enough.

Lévy finance. We close with some comments on the use of Lévy processes for
modelling in mathematical finance. There are three main objections to the
use of Brownian-based models, as in Black-Scholes theory.
(i) Gaussian distributions are symmetric, and have extremely thin tails. Real
financial data show skew, and have much fatter tails than Gaussian. For ex-
ample, with return distributions on stock, the tail behaviour depends on the
length of the return interval. For monthly returns, say, returns are approxi-
mately Gaussian. This is because of aggregational Gaussianity: the Central
Limit Theorem applies. The rule of thumb is that 16 trading days suffice here.
High-frequency (‘tick’) data typically gives heavy tails – tails decreasing like
a power; daily returns are intermediate (e.g., hyperbolic distributions).
(ii) Brownian models are complete (see L29, re the Brownian Martingale
Representation Theorem). Real markets are incomplete. One can see this in,
e.g., the bid-ask spread – real prices are not unique, but fill an interval.
(iii) Brownian motion is continuous, but real prices jump. This is partly be-
cause prices are quoted in terms of money, which is quantised. Also, the very
act of trading shifts prices, as it affects the current balance of supply and
demand. In Black-Scholes theory, one assumes that financial agents are price
takers and not price makers – true to a good approximation for small traders
(or small trades), but not for large ones. Where there is no trading, there is
no price. Where there is trading, there are prices rather than a price. Take,
for instance, the price evolution of a heavily traded (and so highly liquid)
stock under normal market conditions. There will be very many individu-
ally small trades, resulting in what is called jitter. Lévy processes of infinite
activity – infinitely many jumps in finite time – are well suited to modelling
such things. What was once pure Probability Theory for its own sake has
now become an everyday modelling tool for the financial practitioner.

The mathematics of markets under crisis conditions is of course very in-
teresting and topical, but we cannot develop it here.

NHB, December 2010
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