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4.3. The measure-theoretic integral; the Lebesgue integral.
If f : (Ω,A, µ) → (R,B(R)) is defined on a measure space, f is simple,

f =
∑

ciIAi
, we define ∫

fdµ :=
∑

ciµ(Ai).

Although the representation f =
∑

ciIAi
is not unique,

∑
ciµ(Ai) is unique.

For details, see e.g. [S] Lemma 9.1, or Appendix 1.
When the measure µ is fixed, or understood, we can abbreviate

∫
fdµ to∫

f . When µ is Lebesgue measure λ, we can write
∫
fdλ as

∫
f(x)dx, or just∫

f ; we then call
∫
fdλ the Lebesgue integral of f .

If f ≥ 0, we can take fn simple ↑ f (so each
∫
fndµ is defined), and write∫

fdµ := lim
∫

fndµ

(the RHS is increasing in n as fn is). If the limit
∫
fdµ is finite, we call f

µ-integrable, with µ-integral
∫
fdµ (if

∫
fdµ = +∞, we say that f is not µ-

integrable). By above,
∫
fdµ does not depend on the approximating simple

sequence fn.
For general f (not necessarily ≥ 0), f = f+ − f−; call f µ-integrable if

f+, f− are µ-integrable; its µ-integral is then∫
fdµ :=

∫
f+dµ−

∫
f−dµ.

Note that the RHS is well-defined, as both terms are finite: we must avoid
meaningless expressions such as ”∞−∞”. Note that then∫

|f |dµ :=
∫

f+dµ+
∫

f−dµ.

We summarise this by saying that the µ-integral is an absolute integral: f is
µ-integrable iff |f | is. We write L(µ), or L1(µ), for the class of µ-integrable
functions f (L for Lebesgue). For p > 0, write

Lp(µ) := {f : fp ∈ L(µ)}

for the class of pth power integrable functions.
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4.4. Lp-spaces.
Note that from the definition of the µ-integral, if f = g µ-a.e., then∫

fdµ =
∫
gdµ. For, altering f to g alters none of the terms µ(Ai) appearing

in the approximations to
∫
fdµ by simple functions. In particular, if f = 0

µ-a.e.,
∫
fdµ = 0. If N is a µ-null set, applying this to f.IN gives∫

N
fdµ = 0 if µ(N) = 0.

Now when in mathematics we cannot tell two things apart, we should
refuse to discriminate between them. Note that saying f ≡ g iff f = g µ-a.e.
is an equivalence relation, ∼ (reflexive – f ∼ f ; symmetric – f ∼ g implies
g ∼ f ; transitive – if f ∼ g and g ∼ h, then f ∼ h). Accordingly, we
identify all functions equivalent to f with f – or, we pass from functions f
to equivalence classes [f ] of functions. Since we shall always do this from
now on, we write f instead of [f ] to simplify notation. But we change the
notation for the classes Lp(µ) of pth power integrable functions: when we
pass to equivalence classes, we write these as Lp(µ), and call them the Lp

spaces.
Note that in doing this we have abandoned an important part of the

definition of a function. A function f with domain D and range R is a
(single-valued) map from D to R. But now we no longer have individual
values f(x) for a function f at a point x.

For p ≥ 1, the Lp-spaces have much structure and good properties. First,
if f ∈ Lp, cf ∈ Lp for c constant. Also, if f , g ∈ Lp, f + g ∈ Lp. This follows
from Minkowski’s inequality:

(
∫

|f + g|pdµ)1/p ≤ (
∫
|f |pdµ)1/p + (

∫
|g|pdµ)1/p

(Hermann MINKOWSKI (1864-1909) in 1896). So also af + bg ∈ Lp for
constants a, b: Lp is a vector space. For f ∈ Lp, write

∥f∥p := (
∫

|f |pdµ)1/p.

Then Minkowski’s inequality becomes

∥f + g∥p ≤ ∥f∥p + ∥g∥p.

This, together with ∥cf∥p = |c|∥f∥p, is the defining property for a norm.
Then (Lp(µ), ∥.∥p) becomes a normed space. It is a metric space, under the
metric

d(f, g) := ∥f − g∥p,

2



hence in particular a topological space. The vector-space operations are
continuous under this topology: we have a topological vector space. Define
Cauchy sequences as in any metric space: (fn) is Cauchy if

∥fm − fn∥p = d(fm, fn) → 0 (m,n → ∞).

Recall that a metric space is complete if all Cauchy sequences are convergent
(examples: the reals are complete, but the rationals are incomplete). Recall
also that, just as we can construct the reals from the rationals via Cauchy
sequences (Cantor’s construction of the reals, 1872), we can similarly embed
any metric space as a dense subset of a larger complete metric space, called
its completion.

The following important result is the Riesz-Fischer theorem (F. RIESZ
(1880-1956) and E. S. FISCHER (1875-1954), independently in 1907).

Theorem (Riesz-Fischer Theorem). The Lp spaces are complete.

A complete normed space is called a Banach space (after Stefan BANACH
(1892-1945), Théorie des opérations linéaires in 1932). So the Riesz-Fischer
theorem says that the Lp-spaces are Banach spaces. They are one prime class
of examples of the classical Banach spaces, another being the spaces C(K),
the class of continuous functions on a compact topological space K.

5. Properties of the integral.
The following properties of the integral are elementary; see e.g. [S] for

details. Here f, g ∈ L(µ), a, b are constant.
(i) If A, B are disjoint,∫

A∪B
fdµ =

∫
A
fdµ+

∫
B
fdµ.

(ii) f is finite µ-a.e.
(iii) The integral is linear:∫

(af + bg)dµ = a
∫

fdµ+ b
∫
gdµ.

(iv) |
∫
fdµ| ≤

∫
|f |dµ.

(v) The integral is order-preserving:

f ≥ 0 ⇒
∫

fdµ ≥ 0; f ≥ g ⇒
∫

fdµ ≥
∫

gdµ.
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In particular, if |f | ≤ c on A, |
∫
A fdµ| ≤ cµ(A).

(vi) If f ≥ 0 and
∫
fdµ = 0, then f = 0 µ-a.e.

(vii) f = g µ-a.e. implies
∫
fdµ =

∫
gdm (L4, repeated for emphasis).

(viii) If h is measurable and |h| ≤ f , then h ∈ L(µ) (and |
∫
hdµ| ≤

∫
fdµ).

Theorem (Lebesgue’s monotone convergence theorem, 1902: ‘mono-
tone convergence’). If fn are non-negative measurable functions, fn ↑ f ,
then ∫

fndµ ↑
∫
fdµ.

Here the conclusion means that if f ∈ L(µ), i.e.
∫
fdµ < ∞, then both

sides are finite; if not, the RHS is infinite, and the LHS ↑ ∞ or is ∞ from
some point on.
Proof. For each n, choose fnk simple increasing to fn as k → ∞ (possible by
L5). Then

gk := max
n≤k

fnk.

Then the gk are increasing (with k), simple and non-negative, so

g ↑ g (k → ∞)

with g non-negative and measurable (as each gk is). But for n ≤ k

fnk ≤ gk ≤ fk ≤ f.

So letting k → ∞,
fn ≤ g ≤ f.

Letting n → ∞, f = g. As the integral is order-preserving, by above∫
fnkdµ ≤

∫
gkdµ ≤

∫
fkdµ

for n ≤ k. Let k → ∞: by definition of the integral (via simple approxima-
tions), ∫

fndµ ≤
∫

gdµ =
∫
fdµ ≤ lim

k→∞

∫
fkdµ

(as g = f). Let n → ∞:

lim
n→∞

∫
fndµ ≤

∫
fdµ ≤ lim

k→∞

∫
fkdµ.

As the two extremes are equal, these are equalities, which proves the result.
//
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