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7. Further results.

Doob’s lemma
For real-valued measurable functions f : (Ω,A) → (R,B), we write

σ(f) := f−1(B) := {f−1(B) : B ∈ B},

and call this the σ-field generated by f .
The next result is due to the American probabilist J. L. Doob (1910-

2004) (in the Supplement on Measure Theory to his 1953 book Stochastic
Processes).

Doob’s lemma. For f , g real-valued measurable functions, the following
are equivalent:
(i) σ(f) ⊂ σ(g);
(ii) f = h(g) for some measurable function h.

Proof. If (ii) holds and f = h(g),

σ(f) = f−1(B)= (h(g))−1(B)= g−1(h−1(B)) ⊂ g−1(B) = σ(g),

as h is measurable, giving (i). Conversely, if (i) holds, consider first the case
of f an indicator, f = IA, A ∈ A. As σ(f) ⊂ σ(g), A ∈ σ(g), so A = g−1(B)
for some Borel set B ∈ B. Then

f = IA = IB(g) = h(g)

with h = IB. So the result holds for indicators f . It extends to simple f by
linearity, and to general f by approximation, as before. //

Observe that when we take a function h of something, as here, we in
general lose information (e.g. when h(x) = x2, we lose the sign: from x2 we
can recover only ±x). When h is one-to-one (surjective) and so the inverse
function h−1 exists, we can go the other way, and so no information is lost,
but not in general. This gives us the interpretation of Doob’s lemma: σ(f)
represents the information contained in f . We shall make extensive use of
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this in later chapters.

Inequalities.
In addition to Minkowski’s inequality (L6 – ‘the Lp-norm is a norm’),

there are other inequalities for integrals that we shall need. First, for an
index p ≥ 1, we define its conjugate index q by

1

p
+

1

q
= 1.

Thus also
p =

q

q − 1
, q =

p

p− 1
;

q ≥ 1. If p = 1, q = ∞; if p = ∞, q = 1; p = q iff p = q = 2. We
have Hölder’s inequality (Otto HÖLDER (1859-1937) in 1884): for conjugate
indices p, q > 1 and f ∈ Lp, g ∈ Lq, fg ∈ L1 and

|
∫

fg| ≤ (
∫

|f |p)1/p(
∫

|g|q)1/q : ∥fg∥1 ≤ ∥f∥p.∥g∥q.

We note in particular the case p = q = 2, the Cauchy-Schwarz inequality (A.
L. CAUCHY (1789 - 1857) in 1821, H. A. SCHWARZ (1843 - 1921) in 1885):

|
∫
fg| ≤ (

∫
|f |2)1/2(

∫
|g|2)1/2 : ∥fg∥1 ≤ ∥f∥2.∥g∥2.

Call a function f convex if for all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

(geometric interpretation: ‘graph lies above chord’, or ‘graph bends up-
wards’). Then (Jensen’s inequality: J. L. W. V. JENSEN (1859-1925) in
1906): for ϕ convex and f ≥ measurable,∫

ϕ(f)dµ/
∫
dµ ≤ ϕ(

∫
fdµ/

∫
dµ).

For proofs, see e.g. [S] Ch. 12, and Problems/Solutions 3.

Modes of convergence.
We need several modes in which a sequence of measurable functions fn

can converge. The most obvious is pointwise convergence (fn(x) → f(x) for
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all points x), but bearing in mind that we deal with functions only up to sets
of measure 0, this is too stringent, and needs to be qualified to convergence
almost everywhere (a.e.):

fn(x) → f(x) (n → ∞) a.e.

The second is convergence in pth mean (p ≥ 1):

fn → f in pth mean, or in Lp, means ∥fn − f∥p → 0 (n → ∞).

The third is it convergence in measure: fn → f in measure (w.r.t. µ) means
that for all ϵ > 0,

µ{x : |fn(x)− f(x)| > ϵ} → 0 (n → ∞).

We think of convergence a.e. and in pth mean as strong modes of con-
vergence. They are not comparable: neither implies the other. We think of
convergence in measure as an intermediate mode of convergence: it is implied
by each of the first two, but not conversely. Later (Ch. II) we will meet a
weak mode of convergence (convergence in distribution), which is implied by
convergence in measure, but not conversely.

Littlewood’s three principles.
The British analyst J. E. LITTLEWOOD (1885-1977) formulated in 1944

three heuristic principles:
(i) every [measurable] set is nearly a finite union of rectangles;
(ii) every [measurable] function is nearly continuous;
(iii) every convergent sequence of [measurable] functions is nearly uniformly
continuous.

Littlewood’s first principle is made precise by saying that Lebesgue mea-
sure is regular: a measurable set A can be approximated from without by
an Oδ set of the same measure and from within by an Fσ set of the same
measure (and for each ϵ > 0, from without by an open set and from within
by a closed set to within measure ϵ). Regular measures are important more
generally, and connect Measure Theory and Topology.

Littlewood’s second principle is expressed by Luzin’s theorem (N. N.
LUZIN (or Lusin) (1883-1950) in 1912): if f : [a, b] → R is measurable,
for each ϵ > 0 there is a continuous function that coincides with f off a set
of measure < ϵ.
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Littlewood’s third principle is expressed by Egorov’s theorem (D. F. EGOROV
(1869-1931) in 1911): if measurable fn → f on a set of finite measure, with
fn, f finite-valued, then for each ϵ > 0 there is a set of measure < ϵ off which
fn → f uniformly. We then say that fn → f almost uniformly.

Egorov’s theorem extends to a.e. convergence, and then the converse is
also true (and easy to prove). So for finite measure spaces and finite-valued
functions converging to a finite-valued limit, a.e. convergence is the same as
almost uniform convergence.

Product measures and Fubini’s theorem.
Given two measure spaces (Ωi,Si, µi), one can form the cartesian product

Ω := Ω1×Ω2, the σ-algebra A generated by the sets A1×A2 for Ai ∈ Ai, and
the measure µ defined by µ(A1×A2) := µ1(A1)×µ2(A2) extended to A. This
is called the product measure space, and µ is the product measure. We shall
see in II.6 (L11) that this is relevant to independence of random variables.
One can extend to finite products by induction, and also to infinite products
(S. KAKUTANI (1911-2004) in 1943). Again, this is relevant to infinite
replication of experiments (in the simplest case, coin-tossing).

Fubini’s theorem (Guido FUBINI (1879-1943) in 1907) concerns double
and repeated integrals. If f(x, y) is a function of two variables, let fx be the
function of y with x held constant, and similarly for fy. Then if f ∈ L1(µ),∫ ∫

Ω
fdµ =

∫
Ω1

(
∫
Ω2

fxdµ2)dµ1 =
∫
Ω2

(
∫
Ω1

fydµ1)dµ2

This results from the integral being absolute: for a non-absolute integral such
as the Riemann integral, complications regarding cancellation can arise.

The Daniell integral.
We began with measure and turned to to integration – in particular, we

went from Lebesgue measure to Lebesgue integration. We point out that one
can instead go in the reverse direction. This was done by P. J. DANIELL
(1889-1946) in 1918. Here, the integral is defined by its properties (linear,
order-preserving, continuous – ‘integral of limit = limit of integral’, as in
the Lebesgue convergence theorems). The integral is treated as the primary
concept, and measure and its properties are deduced from there. Compare
the reversal in Calculus: we learn Differential Calculus first and then Integral
Calculus, but this is the reverse of the historical order, by two thousand years.
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