spprob3.tex

Problems 3. 28.11.2011

Q1. A function f is convex if for $\lambda_1, \lambda_2 \geq 0$ with $\lambda_1 + \lambda_2 = 1$,

$$f(\lambda_1 x_1 + \lambda_2 x_2) \le \lambda_1 f(x_1) + \lambda_2 f(x_2)$$

for all x_i . We quote:

(a) this is equivalent to

$$f(\lambda_1 x_1 + \ldots + \lambda_n x_n) \le \lambda_1 f(x_1) + \ldots + \lambda_n \lambda_2 f(x_n)$$

for all n and all x_i (Jensen's Inequality; $\lambda_1 x_1 + \ldots + \lambda_n x_n$ is called a convex combination of the x_i);

- (b) for twice differentiable functions $f, f'' \ge 0$ implies convexity.
- (i) Draw a picture, and interpret convexity as 'chord below arc' (concavity is 'arc below chord').
- (ii) Show that $-\log x$ is convex on $(0, \infty)$. Hence show that for $\lambda_i \geq$ and summing to $1, x_i > 0$,

$$x_1^{\lambda_1} x_2^{\lambda_2} \le \lambda_1 x_1 + \lambda_2 x_2.$$

(iii) Show that e^x is convex. Deduce that for $x_i > 0$ and λ_i as above,

$$x_1^{\lambda_1} \dots x_n^{\lambda_n} \le \lambda_1 x_1 + \dots + \lambda_n x_n.$$

Take each $\lambda_i = 1/n$ to obtain

$$(x_1...x_n)^{1/n} \le (x_1 + ... + x_n)/n.$$

(The LSE is called the geometric mean, G; the RHS is called the arithmetic mean, A; this result $G \leq A$ is called the AM-GM inequality.)

Q2. Hölder's inequality. If $f \in L_p$, $g \in L_q$, p > 1 (or q > 1), and p, q are conjugate indices,

$$\frac{1}{p} + \frac{1}{q} = 1,$$

then (i) $fg \in L_1$;

(ii)

$$\int |fg| \le (\int |f|^p)^{1/p} \cdot (\int |g|^q)^{1/q} : \qquad ||fg||_1 \le ||f||_p \cdot ||g||_q.$$

When p=q=2, deduce the Cauchy-Schwarz inequality: if $f,g\in L_2$, then $fg\in L_1$ and

$$\int |fg| \le \sqrt{(\int |f|^2) \cdot (\int |g|^2)} : \qquad ||fg||_1 \le ||f||_2 \cdot ||g||_2.$$

Q3. Minkowski's inequality. If $p \ge 1$, and $f, g \in L_p$, then

- (i) $f + g \in L_p$, and
- (ii)

$$(\int |f+g|^p d\mu)^{1/p} \le (\int |f|^p d\mu)^{1/p} + (\int |g|^p d\mu)^{1/p} : \|f+g\|_p \le \|f\|_p + \|g\|_p.$$

NHB