spsoln3.tex

Solutions 3. 4.11.2011

Q1. (i) Draw your own picture for 'chord below arc'.

(ii) $-\log x$ has second derivative $1/x^2 > 0$ on $(0, \infty)$, so $-\log$ is convex. So

$$\lambda_1 \log x_1 + \lambda_2 \log x_2 < \log(\lambda_1 x_1 + \lambda_2 x_2).$$

Exponentiating,

$$x_1^{\lambda_1} x_2^{\lambda_2} \le \lambda_1 x_1 + \lambda_2 x_2.$$

(iii) As e^x has second derivative $e^x > 0$, exp is convex. So

$$\exp\{\lambda_1 x_1\} \dots \exp\{\lambda_1 x_1\} = \exp\{\lambda_1 x_1 + \dots + \lambda_n x_n\} \le \lambda_1 e^{x_1} + \dots + \lambda_n e^{x_n}$$

Take $x_i = \log a_i$:

$$a_1^{\lambda_1} \dots a_n^{\lambda_n} \le \lambda_1 a_1 + \dots + \lambda_n a_n.$$

Take each $\lambda_i = 1/n$:

$$(a_1, \dots, a_n)^{1/n} < (a_1 + \dots + a_n)/n : G < A.$$
 //

Q2. Where $|g| \leq |f|^{p-1}$, $|fg| \leq |f|^p$, integrable. Elsewhere, $|g| > |f|^{p-1}$, so $|f| < |g|^{1/(p-1)} = |g|^{q-1}$, so $|fg| < |g|^q$, integrable. Combining, fg is integrable: $fg \in L_1$.

The set where fg=0 makes no contribution, so we can assume fg non-zero, so f, g non-zero, so $\int |f|^p$, $\int |g|^q$ positive. Apply Q1(ii) with $\lambda_1=1/p$, $\lambda_2=1/q$ (these sum to 1), $x_1=|f|^p/\int |f|^p$, $x_2=|g|^q/\int |g|^q$. This gives

$$\frac{|fg|}{(\int |f|^p)^{1/p} (\int |g|^q)^{1/q}} \leq \frac{|f|^p}{p \int |f|^p} + \frac{|g|^q}{q \int |g|^q}.$$

Integrate: the RHS integrates to

$$\frac{1}{p} + \frac{1}{q} = 1.$$

The LHS integrates to

$$\frac{\int |fg|}{(\int |f|^p)^{1/p} (\int |g|^q)^{1/q}}.$$

Combining gives Hölder's inequality. Taking p=q=2 gives the Cauchy-Schwarz inequality.

Q3. If p = 1, $|f + g| \le |f| + |g|$ by the Triangle Inequality. Integrating this gives the case p = 1 of Minkowski's inequality. So take p > 1 below.

If A is the set where $|f| \ge |g|$, so A^c is the set where |f| < |g|,

$$|f+g|^p \le 2^p |f|^p$$
 on A , $2^p |g|^p$ on A^c .

So if $f, g \in L_p$, $f + g \in L_p$, giving (i). For (ii),

$$\int |f+g|^p = \int |f+g| \cdot |f+g|^{p-1} \le \int |f| \cdot |f+g|^{p-1} + \int |g| \cdot |f+g|^{p-1},$$

by the Triangle Inequality. We estimate the first term on the right by Hölder's inequality:

$$\int |f|.|f+g|^{p-1} \leq (\int |f|^p)^{1/p}.(\int |f+g|^{(p-1)q})^{1/q} = (\int |f|^p)^{1/p}.(\int |f+g|^p)^{1/q},$$

as (p-1)q = p. Similarly for the other term. Combining,

$$\int |f+g|^p \le \left[\left(\int |f|^p \right)^{1/p} + \left(\int |g|^p \right)^{1/p} \right] \cdot \left(\int |f+g|^p \right)^{1/q}.$$

If $\int |f+g|^p = 0$, there is nothing to prove. If not, divide both sides by $(\int |f+g|^p)^{1/q}$: 1-1/q=1/p as p, q are conjugate indices, so

$$(\int |f+g|^p)^{1/p} \le [(\int |f|^p)^{1/p} + (\int |g|^p)^{1/p}],$$

which is Minkowski's inequality. //

- Note. 1. These named inequalities are standard, and there are proofs in all the books. See e.g. [S], Th. 12.2 (Hölder), Cor. 12.4 (Minkowski). One needs both a little basic Real Analysis (Schilling uses Young's Inequality, his Lemma 12.1, in place of our use of Jensen's Inequality), and standard properties of the integral.
- 2. We have deliberately not mentioned the measure μ here, partly to simplify the notation for the proofs (quite fiddly enough as it is), partly to emphasize the full generality. For example, specializing to μ as counting measure we obtain the Hölder, Cauchy-Schwarz and Minkowski inequalities for sums there is no need to give a separate proof!

NHB