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II. INTEREST-RATE PRODUCTS AND DERIVATIVES

1. Terminology

Numéraire
Recall (MATL480) that a numéraire (or just numeraire, dropping the ac-

cent for convenience) is any asset whose value at any time t is always-positive,
and so can be used as a unit of reckoning. As we discussed there, one can
change numeraire (indeed, one needs to when switching from one currency to
another), but this does not alter anything of importance. So we may choose
our numeraire to suit our convenience. We shall usually use the bank account
as numeraire.

Bank account
We shall use as our bank account – numeraire of choice – the always-

positive process with initial value B0 > 0 and dynamics

dBt = rtBtdt, Bt = B0 exp(

∫ t

0

rsds).

Here r = (rt) gives the risk-free instantaneous interest rate – spot rate, or
short rate (‘short’ for short-term) – at time t.

Risk-Neutral Valuation Formula (RNVF)
Recall the RNVF, and write Q = QB for the risk-neutral measure (EMM)

denominated in numeraire B, with expectation which we may abbreviate to
EQ or EB. Then using Et as shorthand for E[.|Ft] – conditional expectation
given what we know at time t – we have, for an asset H = (Ht) (which we
think of as the payoff – at time T ) the time-t value

EB
t [
Bt

BT

HT ] = EQ
t [exp(−

∫ T

t

rsds)HT ]. (RNV F )

As above, we can (and will) abbreviate notation here to

Et[
Bt

BT

HT ] = Et[exp(−
∫ T

t

rsds)HT ]. (RNV F )
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Recall also that in the ‘risk-neutral world’ – i.e., after the Girsanov change
of measure P 7→ Q – assets have as drift the risk-free interest rate r: for an
asset A = (At), with volatility Avol,

dAt = rtAtdt+ AvoltdBM
Q
t ,

with BMQ denoting Brownian motion (BM) under the measure Q.

Zero-Coupon Bonds (ZCB) – “bonds” – and their prices
Coupons are payments made during a loan period, in addition to repay-

ment of the principal (the amount borrowed) and interest at the end. They
correspond to dividends paid to shareholders. When money is lent without
coupons: a T -maturity zero-coupon bond (ZCB) is a contract which guaran-
tees the payment of one unit of currency at time T . The contract value at
time t ∈ [0, T ] is denoted by P (t, T ):

P (T, T ) = 1,

and writing D = D(t, T ) for the discount function

D(t, T ) := exp(−
∫ T

t

rsds), (D)

the price (value) at t is

P (t, T ) = Et[
Bt

BT

1] = Et[exp(−
∫ T

t

rsds)] = Et[D(t, T )]. (P )

ZCBs can be used as the fundamental quantities – the building bricks from
which other more complicated things can be derived.

We will drop explicit mention of Q in EQ
t [.] from now on: all our expec-

tations will be under Q unless otherwise stated.
We define the continuously-compounded spot interest rate at time t for

maturity at time T as R(t, T ), where R is defined by

P (t, T ) = exp{−R(t, T )(T − t)}. (R)

We can alternatively write

P (t, T ) = exp{−
∫ T

t

f(t, u)du},

2



where

f(t, T ) := − ∂

∂T
logP (t, T ) (f)

is called the instantaneous forward rate. We return to it in Ch. IV, as an
alternative to modelling the spot-rate rt.

LIBOR
The spot-LIBOR rate L(t, T ) at time t for maturity T is the constant rate

at which an investment has to be made to produce an amount of one unit of
currency at maturity, starting from P (t, T ) units of currency at time t, when
accruing occurs proportionally to the investment time:

P (t, T )(1 + (T − t)L(t, T )) = 1, L(t, T ) =
1− P (t, T )

(T − t)P (t, T )
. (P − L)

This (the definition of LIBOR!) is an extremely important relationship! For,
when one of P and L goes up, the other goes down – the two are inversely
related. We shall see below that this is the key to quantitative easing (QE).

Quantitative easing (QE)
From the Bank of England’s website:

“Home / Monetary policy / Quantitative easing
Quantitative easing
The Bank of England can purchase assets to stimulate the economy. This is
known as quantitative easing. In this section:
Inflation
The interest rate (Bank Rate)
On this page:
What is quantitative easing?

Quantitative easing is an unconventional form of monetary policy that
our Monetary Policy Committee has carried out in order to stimulate the
economy when interest rates are already low. The ultimate aim of this is to
boost spending to reach our inflation target of 2 %. Quantitative easing is
sometimes called QE or just asset purchases. The Monetary Policy Commit-
tee makes decisions on quantitative easing at the same time as it makes its
interest-rate decision.

Quantitative easing does not involve literally printing more money. In-
stead, we create new money digitally.
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Quantitative Easing Asset Purchase Programme:
435bn
Next due: 8 February 2018
Corporate Bond purchases:
10bn
Next due: 8 February 2018
What is quantitative easing?

Quantitative easing is when a central bank like the Bank of England cre-
ates new money electronically to make large purchases of assets. We make
these purchases from the private sector, for example from pension funds,
high-street banks and non-financial firms. Most of these assets are govern-
ment bonds (also known as gilts). The market for government bonds is large,
so we can buy large quantities of them fairly quickly.

The purchases are of such a scale that they push up the price of assets,
lowering the yields (the return) on them1. This encourages those selling these
assets to us to use the money they received from the sale to buy assets with
a higher yield instead, like company shares and bonds.

As more of these other assets are bought, their prices rise because of the
increased demand. This pushes down on yields in general. The companies
that have issued these bonds or shares benefit from cheaper borrowing be-
cause of these lower yields, encouraging them to spend and invest more.”

Read, mark, learn and inwardly digest this clear statement of a vitally im-
portant public policy. This in a nutshell is one of the two most important
things in the course (the other being market models – Part II).

The QE programmes, applied extensively after the Crash of 2007/8, have
been broadly successful in keeping interest rates low (LIBOR here acts as a
proxy for interest rates generally), so as to stimulate the economy, from its
zombie-like existence post-Crash towards more normal levels of activity as
per pre-Crash.
Effects of QE.

In accordance with the Law of Unintended Consequences, QE has had
extensive, unanticipated and undesirable side-effects. As in the second of the
two points made in the Richard Partington piece quoted in the Guardian in
Week 1a, and in the BoE piece above, QE discourages investors from buy-
ing bonds (because the yields are low), and encourages them to buy stock

1by (P − L)
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instead. This increases stock prices, and (as in the Guardian piece) has re-
sulted in record highs for the FTSE, although the economy generally remains
depressed. Now these purchases are made by the already well-off, who have
benefited financially; the economy remaining depressed means that these
benefits are not shared by those without the money to buy such assets. This
has gravely reduced social mobility, and generated great resentment by those
who feel left out, though no fault of their own, while seeing those with money
using that money to make more money. This is the Matthew Principle: ‘For
unto him that hath, it shall be given, but from him that hath not it shall be
taken away, even that which he hath’. The resulting political tensions have
diminished social cohesion, poisoned politics, and underlie recent events such
as Brexit.

The zero-coupon curve – often called the yield curve, or term structure at
time t (present time, now) – is the graph of the function

T 7→ L(t, T ), initial point rt = limT↓tL(t, T ) ∼ L(t, t+ ε).

This function is called the term structure of interest rates at time t. So the
fundamental quantity here is the process r = (rt), from which P (t, T ) is ob-
tained by an expectation, Et = EQ

t .
Matters split according to whether a financial product depends on the

curve dynamics – the way in which the yield curve changes over time – or
not. As there are many different models for the yield-curve dynamics, we
split our treatment of products accordingly.

In addition to the term structure of interest rates (above), we consider
the term structure of volatility (V.13 below: ‘smile dynamics’).

2. Products not depending on the curve dynamics

Forward-rate agreements (FRAs)
A forward-rate agreement (FRA) is a contract involving three times: the

current time t (‘now’), the expiry time T > t, and the maturity time S > T .
The contract gives the holder an interest-rate payment for the period from T
to S with fixed rate K at maturity S against an interest-rate payment over
the same period with rate L(T, S). So this contract allows the holder to lock
in the interest rate between T and S at a desired value K.

The FRA is called a receiver FRA if we pay floating L(T, S) (floating:
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uncertain, and in the future) and receive fixed K. It is a payer FRA if we
pay K and receive floating L(T, S). To remember which is which: it is K
that decides (K is analogous to the strike price for an option (MATL480);
hence this choice of notation).
Note. To remember this: it is K that is known at the time the agreement
is made (as with the strike K for call and put options); L(T, S), which is
floating, is unknown. So, “pay or receive K” gives the names to payer or
receiver FRAs.

Proposition. The price of a receiver FRA is

FRA(t, T, S,K) = P (t, S)(S − T )K − P (t, T ) + P (t, S). (FRA)

The price of a payer FRA is the negative of this.

Proof. The second statement follows from the first, as the cash flows for
receivers and payments go in opposite directions. Write τ := S − T . As
payments are made at S, we need to discount them back to t through D(t, S):

FRA(t, T, S,K) = Et[D(t, S)τK −D(t, S)τL(T, S)] (def. of rec. FRA)

= τKEt[D(t, S)]− Et[D(t, S)τL(T, S)]

= τKP (t, S)− Et[D(t, S)τL(T, S)] (by (P −D))

= τKP (t, S)− Et[τD(t, T )D(T, S)L(T, S)] (definition of D)

= τKP (t, S)− Et[ET [τD(t, T )D(T, S)L(T, S)]] (tower property).

Now L(T, S) = (1− P (T, S))/(τP (T, S)) and P (T, S) = ET [D(T, S)] is FT -
measurable (= known at time T ). So

Et[ET [τD(t, T )D(T, S)L(T, S)]] = Et[τD(t, T )L(T, S)ET [D(T, S)]]

(taking out what is known)

= Et[τD(t, T )L(T, S)P (T, S)] (definition of P (T, S))

= Et[D(t, T )]− Et[D(t, T )P (T, S)] (definition of L(T, S))

= Et[D(t, T )]− Et[D(t, T )ET [D(T, S)]] (definition of P (T, S))

= Et[D(t, T )]− Et[ET [D(t, T )D(T, S)]]] (putting Et, ET together)

= Et[D(t, T )]− Et[D(t, T )D(T, S)]] (tower property)
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= Et[D(t, T )]− Et[D(t, S)]] (definition of D(., .))

= P (t, T )− P (t, S) (definition of P (., .)).

Combining,

FRA(t, T, S,K) = τKP (t, S)− P (t, T ) + P (t, S). //

Forward LIBOR rate
The value of K which makes the contract fair (both sides 0) is the forward

LIBOR interest rate at time t for expiry T and maturity S,

K = F (t;T, S)

say. This is obtained by solving for K in LHS = RHS = 0 above:

τKP (t, S)− P (t, T ) + P (t, S) = 0 :

K = F (t;T, S) :=
1

(S − T )

(P (t, T )

P (t, S)
− 1
)
.

Comparing RHSs (the third in the first string of equations with the last
in the second) gives

τEt[D(t, S)L(T, S)] = P (t, T )− P (t, S),

which (recall τ := S − T ) with the definition of F above gives:

Corollary

Et[D(t, S)L(T, S)] = P (t, S)F (t;T, S). (∗)
Note that the derivation above is very general. We have made no as-

sumptions – so all this holds for any model of interest rates. All we have
used is the definitions of the quantities involved and standard measure the-
ory (MATL480 – tower property, taking out what is known, etc.).

Interest Rate Swaps (IRS)
An interest-rate swap (IRS) is a contract that exchanges payments be-

tween two differently indexed legs, starting from a future time-instant. At
future dates Ti, · · · , Tk, writing τj := Tj − Tj−1 (following the notation used
above), the fixed leg pays the floating leg

τjK (fixed to floating)
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and the floating leg pays the fixed leg

τjL(Tj−1, Tj),

(the LIBOR rate), or taking the expectation ETi
[.],

τjF (ti;Tj−1, Tj).

Here we have two different interest rates (in two different countries, say); we
take the view of the interest rate in our country/the country where we are
operating. Then, K is fixed; the IRS is called a payer IRS for the company
paying K above and receiver IRS for the company receiving K.

The discounted payoff at time t < Ti of a receiver IRS is

k∑
j=i+1

D(t, Ti)τj(K − L(Tj−1, Tj)).

Interest-Rate Swaps and Forward-Rate Agreements
Note that a IRS can be broken down into, and so can be valued (or priced)

as, a collection of FRAs. In particular, a receiver IRS (RIRS for short) can
be valued as a collection of receiver FRAs (RFRAs):

RIRS(t, [Ti, · · · , Tk], K) =
k∑

j=i+1

RFRA(t, Tj−1, Tj, K),

which by the Proposition is

k∑
j=i+1

τjKP (t, Tj)− P (t, Ti) + P (t, Tk) (a)

(the sums of the last two terms in (FRA) ‘telescope’ – cancel, leaving just
two end-terms), or alternatively

k∑
j=i+1

τj(K − F (t;Tj−1, Tj)).

Similarly for payer IRSs and payer FRAs.
The value

K = Si,k(t)
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which makes
IRS(t, [Ti, · · · , Tk], K) = 0

(payer or receiver here) is called the forward swap rate. We abbreviate:

Fj(t) := F (t, Tj−1, Tj).

Solving for K, the forward swap rate is

Si,k(t) =
P (t, Ti)− P (t, Tk)∑k

j=i+1 τjP (t, Tj)
: (b)

Si,k(t) =
k∑

j=i+1

wj(t)Fj(t), wj(t) :=
τjP (t, Tj)∑k

j=i+1 τjP (t, Tj)
.

Here the weights wj(t) (which are functions of the F s, and so depend on the
future at time t, i.e. are random at t) are non-negative and sum to 1:

0 ≤ wj(t) ≤ 1,
k∑

j=i+1

wj(t) = 1.

Combining (a) and (b),

RIRS(t, [Ti, · · · , Tk], K) = (K − Si,k(t))
k∑

j=i+1

τjP (t, Tj),

and likewise (reversing the cash flows)

PIRS(t, [Ti, · · · , Tk], K) = (Si,k(t)−K)
k∑

j=i+1

τjP (t, Tj).

Note. We will encounter summations like those here many times. They illus-
trate our basic method: break down the (uncountable) time continuum into
finitely many intervals; each contributes a summand to the summation. This
decomposition reduces an infinite-dimensional problem to a finite-dimensional
one, which is much easier. A good example of this is the reduction of caps
to caplets (and floors to floorlets); see II.3 below.
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3. Products depending on the curve dynamics

Caps and caplets
A cap can be viewed as a payer IRS where each exchange payment is

made only if if has positive value (so this is like an option, which will only
be exercised if it pays the holder to do so!). So the cap discounted payoff is

k∑
j=i+1

D(t, Tj)τj(L(Tj−1, Tj)−K)+ =
k∑

j=i+1

D(t, Tj)τj(Fj(Tj−1)−K)+.

Suppose a company is LIBOR-indebted, and has to pay at times Ti+1, · · · , Tk
the LIBOR rates resetting at the previous time-instants Ti, · · · , Tk−1. The
company thinks that LIBOR rates will increase in the future (so its debt will
increase), and wishes to protect itself. It can buy a cap, so that it pays at
most K at each payment date (so K is like the strike price for an option).

A cap contract can be decomposed into a sum of terms, the summands
in the above formula. These are called caplets:

D(t, Tj)τj(L(Tj−1, Tj)−K)+ = D(t, Tj)τj(Fj(Tj−1)−K)+.

Each caplet can be evaluated separately, and the values summed to obtain
the cap price (note the analogy with call options!). But to value caplets,
we need the whole distribution of future rates, not just their means. So the
dynamics of interest rates is needed to value caplets: the current zero curve
T 7→ L(t, T ) is not enough. We need to specify how this infinite-dimensional
object moves, in order to find its distribution in the future. This can be done,
for example, by specifying how the spot-rate r moves (spot-rate models: Ch.
III below).

We will price caplets by Black’s caplet formula (V.2; 4a). This is a close
relative of the Black-Scholes formula of MATL480.

Floors and floorlets
A floor can be seen as a receiver IRS where each exchange payment is

made only if it has positive value (as with caps above, and again, as with
options – but this time, with puts rather than calls). The floor discounted
payoff is

k∑
j=i+1

D(t, Tj)τj(K − L(Tj−1, Tj))+ =
k∑

j=i+1

D(t, Tj)τj(K − Fj(Tj−1))+.
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The floor price is the risk-neutral expectation E = EQ of the above dis-
counted payoff. The floorlets are the individual summands above.

Swaptions
Finally, we introduce options on interest-rate swaps (IRSs) – swaptions.
A payer swaption is a contract giving the right (but not – understood

from now on – the obligation) to enter into a payer IRS at some future time.
This time of possible entry is called the maturity. Usually, the maturity is
the first reset time of the underlying IRS.

The IRS value at its first reset date Ti, i.e. at maturity, is by above

PIRS(t, [Ti, · · · , Tk], K) =
k∑

j=i+1

P (ti, Tj)τj(F (Ti;Tj−1, Tj)−K)

= (Si,k(t)−K)
k∑

j=i+1

τjP (t, Tj)

= (Si,k(t)−K)Ci,k(Ti),

say. The option will be exercised only if this is positive. So the payer-
swaption’s discounted payoff at time t is

D(t, Ti)Ci,k(Ti)(Si,k(Ti)−K)+ = D(t, Ti)
( k∑
j=i+1

P (ti, Tj)τj(F (Ti;Tj−1, Tj)−K)
)
+
.

Unlike caps, this payoff cannot be decomposed additively. To summarise:
Caps:

Decompose into caplets, each with a single forward rate. Deal with each
caplet separately, and add the results together. Only marginal distributions
of the different forward rates are involved.
Swaptions.

No such decomposition is possible. The summation is inside the positive-
part operator (.)+, not outside as with caps. With swaptions, we need to
consider the joint distributions involved. The correlation between rates is
fundamental in handling swaptions, unlike the cap case.
Which variables do we model?

For some products – FRAs, IRSs – the dynamics of interest rates are
not needed for valuation. The current curve is enough. But for caps, swap-
tions and more complex derivatives, the dynamics are necessary. Specifying
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a stochastic dynamics for interest rates amounts to choosing an interest-rate
model. There are many!

Which quantities do we model? Short rates rt? LIBOR rates L(t, T )?
Forward LIBOR rates Fj(t) = F (t;Tj−1, Tj)? Forward swap rates Si,k(t)?
Bond prices P (t, T )?

How is randomness modelled? – i.e., what kind of stochastic process or
SDE do we select for our model? (Markov diffusions, etc.)

What are the consequences of our choice in terms of valuation of mar-
ket products, ease of implementation, goodness of calibration to real data,
pricing complicated products with the calibrated model, possibilities for di-
agnostics on the model outputs and implications, stability, robustness etc?

The above shows that this is a large and complex field. But, although the
field is interesting and challenging academically, it is by no means only – or
even primarily – of academic interest. The market in interest-rate derivatives
is vast – trillions of dollars. A very small percentage of such a vast sum is
still very large. Interest rates and interest-rate derivatives are accordingly
reckoned, not in percentages but in basis points (bp) – hundredths of a per-
cent. A gain or loss of a few bp is crucial in the financial services industry
in general and in money markets in particular. This is why we study the
subject in such detail!

There are many interest-rate products on the market, but their number
is measured in hundreds rather than thousands (Government bonds, for ex-
ample, are auctioned at fixed times, at each of which only a fixed range of
bond maturities is offered for sale). Because of the vast amounts of money
involved (trillions, as above), each product is traded in great numbers and
amounts. This means that interest-rate markets are highly liquid – there is
a great deal of trading, and so prices are known accurately.

Other products. We mention here:
Inflation-linked products. European governments have been issuing inflation-
linked bonds since the early 1980s, but it is only recently that such products
have become more commonly traded. Inflation here is measured in terms of
the Consumer Price Index (CPI). Various measures of inflation are used, e.g.
with or without housing costs included. The CPI is based on a representative
basket of goods and services. For details, see [BM, Part VI, Ch. 15 - 20].
Ratchets. See e.g. [BM, 13.5].
Constant maturity swaps (CMS). See e.g. [BM, 13.7].
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