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III. SHORT-RATE MODELS

1. Possible model choices
This approach relies on the fact that the zero coupon curve at each time,

or equivalently the zero bond curve

T 7→ P (t, T ) := EQ
t [exp{−

∫ T

t

rsds}],

is completely characterised by the probabilistic/dynamic properties of r.
So we write a model for r, the initial point of the curve T 7→ L(t, T ) for

T = t at every instant t. Typically, an SDE for r is chosen:

drt = b(t, rt)dt+ σ(t, rt)dSt,

where b(t, rt) is the local mean, σ(t, rt) is the local standard deviation (SD),
and the stochastic process (St) is the driving noise (stochastic change). We
shall confine ourselves in this course to the most important case, when S is
chosen to be Brownian motion (BM):

drt = b(t, rt)dt+ σ(t, rt)dWt (r)

(‘W for Wiener’).
Each choice of model for r needs to be evaluated in the light of the

requirements for interest-rate modelling set out at the end of Chapter II
above. We confine ourselves here to four of the most important ones. These
are – using α to denote a (multi-dimensional) parameter:
1. Vasicek model (1977):

dxt = k(θ − xt)dt+ σdWt, α = (k, θ, σ). (V as)

2. Cox-Ingersoll-Ross (CIR) model, 1985.

dxt = k(θ − xt)dt+ σ
√
xtdWt, α = (k, θ, σ), 2kθ > σ2. (CIR)

3. Affine term-structure models (ATM):

R(t, T ) = α(t, T ) + β(t, T )rt.
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4. Exponential Vasicek:

xt = exp{zt}, dzt = k(θ − zt)dt+ σdWt, α = (k, θ, σ). (ExpV )

Each model has important consequences, which must be kept in mind when
choosing a particular short-rate model.

We mention also the Dothan/Rendleman and Bartter model:

dxt = axtdt+ σxtWt, α = (a, σ).

This has the form of the SDE for geometric Brownian motion (GBM: MATL480,
VI), with solution

xt = x0 exp{(a− 1

2
σ2)t+ σWt}.

So (as with the Black-Scholes model of MATL480), the solution is log-normal.
For bond prices, this leads to integrals that have to be done numerically. See
BM, §3.2.2. This is not an ATM.

2. Vasicek model, 1977

dxt = k(θ − xt)dt+ σdWt, α = (k, θ, σ). (V as)

We have met this SDE before (MATL480, V.6, Week 5a), in the form of the
Ornstein-Uhlenbeck (OU) process (replace xt by xt − θ to reduce to (OU)
there). This model has several attractive properties. It can be solved ex-
plicitly (as we did before). Its solution is Gaussian – indeed, it is stationary
Gaussian Markov. The model is mean-reverting: the mean E[rt] → θ as
t → ∞, with a velocity depending on k (relaxation time 1/k), while the
variance does not explode.
Drawbacks: (a) As rates are Gaussian, they can take negative values (I.5).
(b) Gaussianity does not fit with observed market data.

Mean reversion and interest rates.
This behaviour is consistent with that of interest rates traditionally – that

is, before the Crash of 2007/08. Then, interest rates varied with the state of
the business cycle, and showed a tendency to revert to their long-term mean
(‘central push’); see I.3.
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Pricing ZCBs under Vasicek.
Recall (MATL480, Prob/Soln 5b Q2) our solution to the Ornstein-Uhlenbeck

process (OU), equivalently, to Vasicek, and (MATL480, Prob/Soln 5b Q1)
that for a a constant vector, linear combinations aTX of a Gaussian random
vector X are Gaussian:

X ∼ N(µ,Σ) ⇒ aTX ∼ N(aTµ, aTΣa).

We used this there to show that for f deterministic,
∫ t
0
f(s)dWs is Gaussian.

The same argument shows that, when the spot rate r = (rt) is Gaussian, as
here in the Vasicek model,

X := −
∫ t

0

rsds is Gaussian : X ∼ N(M,V 2),

say. ThenD(t, T ) = eX is log-normal, LN(M,V 2), and (MATL480, Prob/Soln
4b Q1, Q2) has mean

P (t, T ) = E[D(t, T )] = E[eX ] = exp{M +
1

2
V 2}.

One can find M and V , and so show that ([BM, 3.2.1], [Z, p.126]) the bond
price P is given by

P (t, T ) = exp{−R(t, T )(T − t)}
= A(t, T ) exp{−B(t, T )rt},

where

B(t, T ) =
1

κ
[1− e−κ(T−t)],

A(t, T ) = exp{(θ − σ2

2κ2
)[B(t, T )− T + t]− σ2

4κ
B(t, T )2} :

P (t, T ) = exp{(θ − σ2

2κ2
)[B(t, T )− T + t]− σ2

4κ
B(t, T )2 −B(t, T )rt}.

For details, we refer to the original Vasicek paper,
O. VASICEK, An equilibrium characterization of the term structure. J.
Financial Economics 5 (1977), 177-188.

Observe that R(t, T ) here is an affine function of r, that is, of the form

r 7→ a+ br.
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We shall return to this aspect later (III.4).
One can calculate the price of an option on a ZCB in the Vasicek model.

Since a caplet can be seen as a put option on a zero bond, one can thus
calculate the price of a caplet (this involves a combination of the results
above and calculations resembling those giving the Black-Scholes formula).
We omit details; see e.g. [BM, 3.2.1]. They involve the bivariate normal
distribution (MATL480, Prob/Soln 2b).

The Vasicek model is the simplest of the widely-used models in interest-
rate theory, and pricing caplets is a fairly basic task here, to which we return
later. It is abundantly clear from the above that, even for this fairly simple
task in a fairly simple model, one needs quite a lot of mathematics! Indeed, to
do Mathematical Finance demands a good knowledge of, in particular, Prob-
ability and Statistics, and computing – R for Statistics, MATLAB, C/C++
(or C#) for general computing and data-handling.

One also sees from the above that there are links (indeed, profound links)
between normality (or Gaussianity) and linearity. Where one has both, one
may have the analytic tractability to enable one to do calculations, as here.

3. Cox-Ingersoll-Ross (CIR) model, 1985
This is given by the SDE (for the short rate rt = yt)

dyt = κ[µ− yt]dt+ ν
√
ytdWt, α = (κ, µ, ν).

Subject to reasonable restrictions on the parameters, this model gives positive
interest rates. The instantaneous rates are not now Gaussian, but have a
non-central chi-squared (χ2) distribution. As with Vasicek, CIR is mean-
reverting; the mean tends to the central value µ at a speed depending on κ,
and the variance does not explode. Although it can be handled analytically
to some extent, it is less tractable than Vasicek, especially for extensions
to the multifactor case with correlation. But, CIR usually fits market data
better than Vasicek. The parameters have interpretations as in Vasicek:
µ: long-term mean reversion level;
κ: speed of mean reversion;
ν: volatility.
We quote:

E[yt] = y0e
−κt + µ(1− e−κt),

var(yt) = y0
ν2

κ
(e−κt − e−2κt) + µ

ν2

2κ
(1− e−κt)2.
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So the process has a limit (or equilibrium, or ergodic) distribution as t in-
creases, around the limiting mean µ and with the limiting variance µν2/2κ.
So:
the larger µ, the larger the long-term average interest rate;
the larger κ, the faster the convergence;
the larger ν, the larger the volatility – but, κ and ν fight each other in their
influence on the volatility.

The bond price P is given here by

P (t, T ) = exp{−R(t, T )(T − t)} = A(t, T ) exp{−B(t, T )rt}
= exp{−α(t, T )−B(t, T )rt},

say, with A (or α), B that can be calculated ( see e.g. [BM, (3.24), (3.25)]).
Again, the exponent – or R(t, T ) – here is affine in r.

4. Affine Term-structure Models (ATM).
Affine term-structure models (ATM for short) are those for which the

continuously compounded spot rate R(t, T ) (II.1) is an affine function of the
spot rate rt:

R(t, T ) = α(t, T ) + β(t, T )rt. (ATM)

Equivalently, by II.1 (R),

P (t, T ) = A(t, T ) exp{−B(t, T )rt}.

These have special and useful features. As we have seen, both the Vasicek
and CIR models are of this type: Vasicek and CIR are ATM.

Recall (II.1) that the bond prices P (t, T ) can be expressed as

P (t, T ) = exp{−
∫ T

t

f(t, u)du},

in terms of the instantaneous forward rate

f(t, T ) := − ∂

∂T
logP (t, T ).

So for affine models,

f(t, T ) = − ∂

∂T
logA(t, T ) +

∂B(t, T )

∂T
rt.
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So the stochastic differential is of the form

df(t, T ) = {· · ·}dt+
∂B(t, T )

∂T
σ(t, rt)dWt,

where σ(t, rt) is the diffusion coefficient in the short-rate dynamics for r. So
the volatility for f in an affine model is

σf (t, T ) =
∂B(t, T )

∂T
σ(t, rt).

Write the risk-neutral dynamics for the short rate rt as

drt = b(t, rt)dt+ σ(t, rt)dWt.

It turns out that a general way to form affine models is to take both the
functions b and σ2 to be affine themselves:

b(t, x) = λ(t)x+ η(t), σ2(t, x) = γ(t)x+ δ(t).

For then, the functions A and B can be obtained from the functions λ, η, γ,
δ above by solving the following differential equations (DEs):

∂

∂t
B(t, T ) + λ(t)B(t, T )− 1

2
γ(t)B(t, T )2 + 1 = 0, B(T, T ) = 1,

∂

∂t
logA(t, T )− η(t)B(t, T ) +

1

2
δ(t)B(t, T )2 = 0, A(T, T ) = 1.

The first equation is a Riccati DE. It needs to be solved numerically in general,
but in the particular cases of the Vasicek model,

λ(t) = −κ, η(t) = κθ, γ(t) = 0, δ(t) = σ2,

or the CIR model,

λ(t) = −κ, η(t) = κθ, γ(t) = σ2, δ(t) = 0,

the DEs are explicitly solvable, and give (of course!) the solutions for A and
B that we found before.

So affinity in the coefficients gives affinity in the term structure. The
converse does not hold in general, but it does hold in the time-homogeneous
case:

b(t, x) = b(x), σ(t, x) = σ(x),
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giving
b(x) = λx+ η, σ2(x) = γx+ δ

for suitable constants λ, κ, γ, δ, giving affine coefficients.

5. Exponential Vasicek model
Here our process is x = (xt), where xt = exp{zt} and z = (zt) is as in

the Vasicek model. As we have studied this, we can transfer our conclusions
from z to x by taking exponentials. But note that there is an important
change: xt is now positive, being an exponential. So the exponential Vasicek
model has positive interest rates (I.5).

Note also that, as zt is normal (Gaussian), xt is log-normal.

Note. The log-normal distribution is somewhat peculiar, even pathological.
Recall the moment-generating function (MGF) of a random variable X: if
X ∼ N(µ, σ2),

M(t) = MX(t) := E[etX ] = exp{µt+
1

2
σ2t2},

for t real. In particular, for the standard normal, X ∼ N(0, 1),

M(t) = exp{1

2
t2}.

If we write
µn := E[Xn]

for the nth moment of X, expand the exponential, etX =
∑∞

0 tnXn/n! (we
assume all moments exist, as they do in the normal case we are interested
in here), interchange of E[.] and Σ give (by Fubini’s theorem from Measure
Theory – quote)

M(t) =
∞∑
0

µnt
n/n!

For those who know Complex Analysis: the mathematics of power series,
as here, is essentially complex rather than real analysis (for background, see
e.g. my homepage, link to M2P3 Complex Analysis, Ch. II). When the
power series here has positive radius of convergence R, the above is justified
(Cauchy-Taylor Theorem). But when R = 0, things are more complicated.
For R > 0, the distribution is uniquely determined by its moments (example:
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normal distribution, R = ∞). But when R = 0, this may not hold – and it
doesn’t hold in the log-normal case: the log-normal is the simplest example
of a distribution not uniquely determined by its moments. This is thought
by some to underlie some of the difficulties one encounters in Mathematical
Finance, in particular, in the Black-Scholes theory.

6. Vasicek model (continued): Objective measure; econometrics,
statistics, historical estimation

We can consider the objective measure Q0-dynamics of the Vasicek model
as a process of the form

drt = [κθ − (κ+ λσ)rt]dt+ σdW 0
t , r(0) = r0.

Here λ is a new parameter, corresponding to the market price of risk. Com-
pare these Q0-dynamics to the risk-neutral Q-dynamics

drt = κ(θ − rt)dt+ σdWt, r(0) = r0.

Both are expressed by linear Gaussian SDEs, which correspond for λ = 0,
the new parameter in the first (constant here, though not in general).

Pass between these two dynamics by a Girsanov change of measure (MATL480,
VI.3):

dQ
dQ0
|Ft = exp{−1

2

∫ t

0

λ2r2sds+

∫ t

0

λrsdW
0
s }.

We get a spot-rate process which is tractable under both measures.

Note.
In traditional finance (MATL480), we begin with the objective measure

Q0, and then pass to the risk-neutral measure and dynamics by adding pa-
rameters. Here we go in the reverse direction, because when pricing one
starts with the risk-neutral dynamics:

Statistics, historical estimation, econometrics: objective measure:

drt = [κθ − (κ+ λσ)rt]dt+ σdW 0
t , r(0) = r0; (Obj)

Pricing: risk-neutral measure:

drt = κ(θ − rt)dt+ σdWt, r(0) = r0. (RiskN)
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It is clear why we need a tractable dynamics in (RiskN): claims are priced
that way, and we have to be able to price things if we are going to trade in
them in (at least, in any quantity: of course, some things are bought and
sold as ‘one-offs’, under exceptional circumstances, such as ‘fire sales’ of as-
sets by firms with cash-flow problems, or bankrupt firms). The reason why
we also need tractable dynamics in (Obj) is to be able to do statistics on
past (historical) data.

Say we are given a series r0, r1, · · · , rn of daily observations of a proxy of rt
– say, a monthly rate, rt ∼ L(t, t+1m): to use this information in our model,
we estimate the model parameters. (For background on estimation of param-
eters in Statistics, see MATL374 Statistical Methods in Actuarial Science, or
e.g. NHB, homepage, link to SMF (Statistical Methods for Finance), Ch. I,
in particular, maximum-likelihood estimation (ME) – MATL374; NHB, SMF
I.) Now data are collected in the real world, under the real-world – objective
– measure Q0. So what we can estimate from such historical observations is
the Q0-dynamics, via estimates of the objective parameters κ, λ, θ, σ. By
contrast, to price derivatives, we use the risk-neutral measure Q. So calibra-
tion of the model to derivative prices, reflecting the current market prices of
such derivatives, involves the Q-dynamics, and the parameters κ, θ, σ – not
including λ as above.

One can combine the two. For instance, as σ is the same in both, one
could estimate σ from historical data by (MLE), and κ, θ by calibration to
market prices.

MLE for Vasicek

drt = [b− art]dt+ σdW 0
t ,

with b, a constants. The solution is, as above, for s < t

rt = rs +
b

a
(1− e−a(t−s)) + σ

∫ t

s

e−a(t−u)dW 0
u .

So (as the Ornstein-Uhlenbeck or Vasicek process is Markov)

rt|rs = rt|Fs ∼ N(rs +
b

a
(1− e−a(t−s)), σ

2

2a
(1− e−2a(t−s))). (∗)

Write δ for the time-step in the data (1 month, in the example above);

β := b/a, α := e−aδ, V 2 :=
σ2

2a
(1− e−2a(t−s)).
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The MLEs of these can be shown to be:

α̂ =
n
∑n

1 riri−1 −
∑n

1 ri
∑n

1 ri−1
n
∑n

1 r
2
i − (

∑n
1 ri−1)

2
,

β̂ =

∑n
1 (ri − α̂ri−1)
n(1− α̂)

,

V̂ 2 =
1

n

n∑
1

[ri − α̂ri−1 − β̂(1− â)2]2.

This gives the MLE estimates of the δ-transition probabilities of the spot-rate
process r under the objective measure Q0; this allows, for instance, simula-
tion of r over δ-spaced future time-instants.

Monte-Carlo simulation (MATL484, Computational Methods in Financial
Mathematics)

From (∗) above, when we know the spot rate r at a time ti, we can use
M-C to simulate forward in time, to the next such time-point ti+1. This is
very convenient. By contrast, we will meet later models that do not lend
themselves to M-C.

7. Spot rate: Choice of model

There are a number of questions we should ask when choosing a model
for the spot-rate r:
(a) Does the dynamics imply positive rates rt for each t? This is desirable,
but (I.5) not as essential as in the past.
(b) What distribution does the dynamics imply for r? – fat-tailed, etc.?
(c) Are bond prices

P (t, T ) = Et[exp{−
∫ T

t

rsds}]

(and so spot rates, forward rates and swap rates) explicitly computable from
the dynamics?
(d) Are bond-option (and cap, floor, swaption) prices explicitly computable
from the dynamics?
(e) Is the model mean-reverting (i.e. mean tends to long-time limit, and
variance does not explode)?
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(f) What do the volatility structures implied by the model look like?
(g) Does the model allow for explicit short-rate dynamics under the forward
measures?
(h) How suitable is the model for Monte-Carlo simulation?
(i) How suited is it for building trees (recombining lattices)?
(j) Do the dynamics allow historical estimation techniques to be used for
parameter estimation?

If we have the initial curve

T 7→ P (0, T ),

for our model to incorporate this curve (our ‘initial condition’), we need to
choose the parameters so that the curve fits future market curves as closely as
possible. This is calibration of the model to market data. This is an optimiza-
tion problem – e.g., for the Vasicek case above. With too few parameters,
some shapes of curve can never be obtained. In such cases, and to also cali-
brate caplet data, exogeneous term-structure models (below) are usually used.
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