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III.7 (continued)

Optimization methods
These include:

local methods – e.g., gradient method;
global methods – e.g., simulated annealing, genetic algorithms, ...
For such endogenous methods, the resulting fit is usually poor.

Exogenous methods
The usual remedy here is to pass from an endogenous model, with param-

eters constants, to an exogenous model with parameters functions – varying
with time. For example, for Vasicek,

drt = κ(θ − rt)dt+ σdWt 7→ κ(θ(t)− rt)dt+ σdWt.

The function θ(t) of time can be defined from the initial market curve
T 7→ L(0, T ) so that the model is exact for the initial time 0. The rem-
ining parameters may be used to calibrate caps/swaptions data (we don’t
need to price caps, as we know their prices –they are very liquid – but we
want to have them ‘inside the model’, to help us price more difficult things).

Exogenous methods: Examples
Dynamics of rt = xt under the risk-neutral measure:

Ho-Lee:
dxt = θ(t)dt+ σdWt. (Ho− Lee)

Hull-White (extended Vasicek)

dxt = κ(θ(t)− xt)dt+ σdWt. (Hull −White/V as)

Hull-White (Extended CIR)

dxt = κ(θ(t)− xt)dt+ σ
√
xtdWt. (Hull −White/CIR)

Black-Derman-Toy (Extended Dothan)

xt = x0 exp{u(t) + σ(t)Wt}. (BDT )
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Black-Karasinski (Extended exponential Vasicek)

xt = exp{zt}, dzt = κ(θ(t)− zt)dt+ σdWt. (BK)

CIR++ (Shifted CIR model, Brigo & Mercurio, 2000)

rt = xt + φ(t;α), dxt = κ(θ − xt)dt+ σ
√
xtdWt. (CIR + +)

Now parameters can be used to fit volatility structures.
Note.

As always, one has conflicting pressures: too few parameters, and we can-
not fit without distortion; too many parameters, and we risk over-fitting –
treating randomness in our data with ‘too much respect’, so that it becomes
fixed rather than transient, and adding new parameters that may not mean
much (or even anything).

Summary of model performance
Dn = distribution (I use ”d/n” in my own notes);
ABP = analytical bond prices (a ‘good thing’);
AOP = analytical bond-option prices (ditto);
MR = mean reverting;
Mult = tractable multi-factor extension;
r > 0: just that.

Model
Vasicek: D/n N (normal); ABP; AOP; Multi; MR.
CIR: D/n non-central chi-squared; ABP; AOP; Multi; MR; r > 0.
Dothan: D/n eN (log-normal); ABP; MR; r > 0.
Exponential Vasicek: D/n eN ; MR; r > 0.
Ho-Lee: D/n N ; ABP; AOP; Multi: r > 0.
Hull-White (Vasicek): D/n N ; ABP; AOP; Multi; MR.
Hull-White (CIR): D/n n-c χ2; MR; r > 0.
BDT: D/n eN ; MR; r > 0.
Black-Karasinski: D/n eN ; MR; r > 0.
CIR++ (Brigo-Mercurio): D/n n-c χ2; ABP; AOP; Multi; MR; r > 0.

Comments
Ho-Lee: very tractable; stylized, simplistic; negative rates.
Hull-White (Vasicek): very tractable, easy to implement and calibrate; trees
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easy; Monte-Carlo possible; can have negative rates; can give pathological
calibrations under some market conditions.
Hull-White (CIR): Not tractable; numerical problems, etc.
BDT: Intractable; some mean reversion but linked to volatility; excellent
distribution; good calibration to distributions implied by market rates; ex-
plosion problem in continuous version –

E[Bt] = E[exp{
∫ t

0

rsds}] =∞.

Needs trinomial trees (below). No Monte Carlo possible.
Black-Karasinski: Intractable; mean reversion; excellent distribution and
good calibration as above; explosion problem (as in all log-normal short-
rate models); needs trinomial trees; no M-C.
CIR++: Tractable; many formulas; easy to implement and calibrate; trees
not easy but feasible; M-C possible; positive rates; can give pathological
calibrations under some market conditions (as with most one-dimensional
short-rate models).

Shifted Vasicek model
This is defined by

rt = xt + φ(t, α), dxt = µ(xt;α)dt+ σ(xt;α)dWt,

with x0 a further parameter. For details, see [BM. 3.8.4, p.100-102].

Path-dependent products
These are derivatives whose payout at maturity T depends on interest

rates at a number of earlier times ti < T . The payout cannot then be de-
composed into a sum of payouts each depending on a single interest rate at
that time. In such cases, it is usually necessary to price by Monte-Carlo
simulation.

Bermudan swaptions
These are swaptions that can be exercised every year, rather than at a

single maturity T . Monte-Carlo simulation is not suitable here. Indeed, sim-
ulating forward in time does not help us to find the optimal exercise strategy.
Instead, we need to proceed as with American options and the Snell envelope:
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start from the final maturity time, and use binomial trees and backward in-
duction.

Trinomial trees
For more complicated models, such binomial trees do not work, and have

to be replaced by trinomial trees. For details, see e.g. [BM]:
3.3.3 for Hull-White;
3.5.2 for BK;
3.9.1 for CIR;
3.10 for expVas;
4.1.2 for G2++.

8. Multidimensional models: How many factors?
The subject of interest-rate theory is infinite-dimensional: the object of

interest is the yield curve, an infinite-dimensional object. But, this is driven
by the source of randomness – driving noise. In the models above, this is
Brownian motion (BM) on the line, BM = W (R). One can capture more of
what is actually observed in real markets by moving to a higher-dimensional
driving noise.

Recall:
(i) the formula

(dWt)
2 = dt,

based on Lévy’s quadratic-variation theorem and basic to the Itô calculus;
(ii) the bivariate normal distribution, with five parameters: two means, two
variances, and one correlation

ρ ∈ (−1, 1)

(ρ = ±1 is possible, but degenerate, so we exclude them here).
These can be used to extend the Vasicek model, and make it more flexi-

ble – so better able to capture cap and swaption structures seen in the market.

Two-factor Vasicek
This is defined by

dxt = κx(θx − xt)dt+ σxdW1(t),

dyt = κy(θy − yt)dt+ σydW2(t),
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dW1(t)dW2(t) = ρdt,

rt = xt + yt + φ(t, α), α = (kx, θx, σx, x0;κy, θy, σy, y0).

This extra flexibility is valuable: with a one-factor (Vasicek) model, we have
for the continuously-compounded spot rate R(t, T )

corr0(R(1y, 2y), R(1y, 30y)) = 1,

because there is only one source of randomness, W . But this is an extreme
and degenerate case (compare degrees Fahrenheit and Centigrade!). With a
two-factor model, we can have much more reasonable correlations between
two such different things.

The question arises as to how many factors – sources of randomness – we
should include. Too few, and the model is not capable of capturing some of
the essential features of what we see in the market. Too many, and the model
risks becoming intractable, and showing over-interpretation – failing to av-
erage out randomness in the data (so fixing it in the model), and cluttering
the model up with spurious parameters etc. The areas of Statistics relevant
here include Multivariate Analysis (SMF, Ch. III) in general, and Principal
Component Analysis (PCA) in particular (SMF, III.5), and regression (SMF,
Ch. IV); see also
N. H. BINGHAM and John M. FRY, Regression: Linear models in statistics,
Springer, 2010.
In what follows, we focus mainly on two-factor and three-factor models.

Also relevant here is the tenor structure. Government bonds, for instance,
could be issued at any time t and for any maturity T . In practice, they are
issued only at some times ti with some maturities Tj. So the bond market is
actually finite-dimensional. Furthermore, the number of products is in the
hundreds, but the amounts traded are in trillions; so, interest-rate deriva-
tives are highly liquid, so we know their price accurately. This is part of the
motivation for market models (Ch. V).

Credit risk.
As we have mentioned, there is in fact no such thing as a risk-free interest

rate. In practice, there is always some risk of default – credit risk. We discuss
this in detail in Ch. VII. This combines well with spot rates: in the presence
of credit risk with default rate λt, the spot rate rt is increased to rt + λt
(Lando’s formula).
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IV. FORWARD-RATE MODELS

1. The Heath-Jarrow-Morton (HJM) model

Recall (II.2, W2a) the forward LIBOR rate at time t between T and S
(S > T > t),

F (t, T, S) =
(P (t, T )

P (t, S)
− 1
)
/(S − T ) = − 1

P (t, S)
.
P (t, T )− P (t, S)

T − S
,

which makes the FRA contract to lock in at time t the interest rates between
T and S fair. When S collapses to T , we get the instantaneous forward rates:

f(t, T ) = limS↓TF (t, T, S) = − 1

P (t, T )
.
∂P (t, T )

∂T
= − ∂

∂T
logP (t, T ).

So

P (t, T ) = exp{−
∫ T

t

f(t, s)ds}. (∗)

When further T collapses to t we get the spot rate (short rate):

lim
T↓t

f(t, T ) = rt.

For, when ε > 0 is small, by (∗)

P (t, t+ ε) = exp{−
∫ t+ε

t

f(t, s)ds} ∼ exp{−εf(t, t)}.

Also,

P (t, t+ ε) = Et[exp{−
∫ t+ε

t

rsds}] ∼ Et[exp{−εrt}] ∼ exp{−εrr};

this follows from continuity of rt in t, which holds in the models of III W2b
above – or more generally, if rt is continuous in mean). Comparing, the result
follows.

We re-write (∗) for reference as

P (t, T ) = exp{−
∫ T

t

f(t, s)ds} = Et[exp{−
∫ T

t

rsds}]. (P, r, f)
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As we have seen in Ch. III on modelling the spot rate rt, there are
limitations here:
(i) The spot rate is not observable (so trying to model it may not be the best
approach);
(ii) We do not get a particularly good fit with one-factor models (most of
the ones we considered). Two-factor models give a better fit, at the cost of
greater complexity, etc.

Here we change approach, and model the forward rate f(t, T ). This is not
observable either! – so it is not clear yet that this will advance us. Indeed,
it seems that this might be even worse, as it is r that is more fundamental:

f(t, T ) = − ∂

∂T
logEt[exp{−

∫ T

t

rsds}],

P (t, T ) = Et[exp{−
∫ T

t

rsds}] = exp{−
∫ T

t

f(t, s)ds}. (∗)

Heath, Jarrow and Morton (1992) – HJM – assumed that, for a given
maturity T , the instantaneous forward rate f(t, T ) evolves, under a given
measure, according to the following diffusion process:

df(t, T ) = α(t, T )dt+ σ(t, T )dWt,

with initial condition
f(0, T ) = fM(0, T ),

where
T 7→ fM(0, T )

is the market instantaneous forward curve at time t = 0, andW = (W1, · · · ,WN)
is an N -dimensional BM. Here σ(t, T ) = (σ1(t, T ), · · · , σN(t, T )) and α(t, T )
are adapted processes, and

σ(t, T )dWt =
N∑
1

σi(t, T )dWi(t)

is the dot (scalar) product of the two vectors on the LHS.
The fundamental result of HJM is that, if the model has no arbitrage (is

NA), then under the risk-neutral measure the dynamics of f must be of the
form

df(t, T ) = σ(t, T )
(∫ T

t

σ(t, s)ds
)
dt+ σ(t, T )dWt. (HJM)

7



As the coefficient of dt is the (local) mean or drift, and this shows that the
drift is determined by the (local) volatility or diffusion coefficient.

The SDE (HJM) is called the Heath-Jarrow-Morton drift condition. We
defer its proof to the next chapter, after we have more detailed tools on
change of numeraire.

Note the contrast with the results of Ch. III on modelling r. There, our
SDEs were of the form

drt = b(t, rt)dt+ σ(t, rt)dWt,

so the whole risk-neutral dynamics was free: b and σ there had no link due
to NA.

Condition (HJM) can be useful in studying NA-properties of models.
But when we need to write a concrete model to price and hedge financial
products, most of the useful models coming out of HJM are the already-
known short-rate models seen earlier (Ch. III), and their multi-factor exten-
sions, which we shall see next (these are particular HJM models, especially
Gaussian models) – or the market models we shall see later (Ch. V). Even
though market models do not necessarily need the HJM framework for their
derivation, HJM can serve as a unifying framework in which all categories of
NA interest-rate models can be expressed.

HJM and credit risk
The HJM framework may be applied to credit risk (VI below). See e.g.

[MG] R. Maksymiuk and D. Gatarek, Applying HJM to credit risk. Risk
12:5 (1999), 67 - 68.

2. Multi-dimensional models and correlations

Recall the Vasicek model: the evolution of the spot-rate process r is given
by the linear Gaussian SDE

dxt = k(θ − xt)dt+ σdWt, α = (k, θ, σ).

Recall also the Vasicek (more generally, affine) bond-price formula

P (t, T ) = A(t, T ) exp{−B(t, T )rt},

from which all rates can be computed in terms of t. In particular, the
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continuously-compounded spot rates are given by the following affine trans-
formation of r:

R(t, T ) = − logP (t, T )

T − t
= − logA(t, T )

T − t
+
B(t, T )

T − t
rt =: a(t, T ) + b(t, T )rt.

Consider now a payoff depending on the joint distribution of two such
rates at time t: for example, T1 = t + 1 years and T2 = t + 10 years. This
would then depend on the joint law of the one-year and ten-year continuously-
compounded spot rates at time t. So the correlation between these two rates
plays a crucial role. Now for the Vasicek model, this is 1:

Corr(R(t, T1), R(t, T2) = Corr(a(t, T1) + b(t, T1)rt, a(t, T2) + b(t, T2)rt) = 1,

as there is only one source of randomness here. So at each time t, all the ma-
turities in the curve are perfectly correlated: for example, the 30-year interest
rate and the 3-month interest rate at the same instant. This means that a
shock to the interest-rate curve at time t is transmitted equally through all
maturities, and the curve, when its initial point – the spot rate rt – is shocked,
moves almost rigidly in the same direction. This sounds unrealistic in the-
ory, and is observed to be unrealistic in practice also. So a more satisfactory
model of curve evolution is needed.

One-factor models such as HW, BK, CIR++ etc. may still prove use-
ful when the product to be priced does not depend on the correlations of
different rates, but depends at every instant on a single rate of the whole
interest-rate curve – say the six-month rate, for example. Such models may
still give an acceptable approximation, e.g. for risk-management purposes,
when the rates that jointly influence the payoff are close (say, the six-month
and one-year rates). Indeed, the real correlation between such near rates is
usually high, so the perfect correlation of a one-factor model may not be un-
acceptable in principle. But in general, we need to move to a model allowing
for more realistic correlation patterns. This can be achieved with multifactor
models, and in particular with two-factor models. Suppose for instance that
we replace the Gaussian Vasicek model with its two-factor (additive) version
(G2++):

rt = xt + yt, (G2 + +)

where
dxt = κx(θx − xt)dt+ σxdW1(t),

dyt = κy(θy − yt)dt+ σydW2(t)
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and
dW1(t)dW2(t) = ρdt.

As we shall see, this leads to models with the bond prices affine functions of
the two factors x and y,

P (t, T ) = A(t, T ) exp{−Bx(t, T )xt −By(t, T )yt}.

This now leads to correlations of the form

Corr(R(t, T1), R(t, T2) = Corr(bx(t, T1)xt+by(t, T1)yt, bx(t, T2)xt+by(t, T2)yt),

and this is no longer identically 1, but depends crucially on the correlation
between the factors x and y, which in turn depends (among other things) on
the instantaneous correlation ρ in their joint dynamics. How much flexibility
is gained here in the correlation structure, whether this is worthwhile and
whether it suffices for practical purposes remains to be seen (and will depend
on the context in which the model is to be used). But this is clearly a step
forward.

Again, the question arises: how many factors should we use in practice?
The choice of number of factors involves a compromise between numerically
efficient computation (keep the number low), and the capacity of the model
to fit realistic covariance/correlation patterns and structures satisfactorily in
most concrete situations.

Empirical evidence
Usually, historical analysis of the whole yield curve, based on PCA or

factor analysis, suggests that under the objective measure two components
can explain 85%− 90% of the variations in the yield curve. See for example,
Table 1 (p.45) in
Farid JAMSHIDIAN and Yu ZHU, Scenario simulation: Theory and method-
ology, Finance and Stochastics 1 (1997), 43 - 67.
They consider JPY, USD and DEM data (this is pre-Euro! – Germany had
the Deutschmark till 2000). They showed that one PC explains 68 - 76 % of
the total variation, whereas three PCs can explain 93 - 94 %. A related anal-
ysis is carried out in Ch. 3 of Rebonato’s book [R1] in interest-rate models
(his Table 3.2) for the UK market.
Here things seem more optimistic: one principal component explains 92 %
of the total variance, whereas two PCs already explain 99.1 %. In some
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studies, an interpretation is given to the PCs, in terms of average level, slope
and curvature of the zero-coupon curve; again, see e.g. Jamshidian and Zhu
(1997).

To summarise: in the objective – real – world, a two- or three-dimensional
process (at least) is needed to model the evolution of the whole zero-coupon
curve realistically. When we move from P-measure to Q-measure – from
the objective world to the risk-neutral world – the covariance structure does
not change: only the drift changes when we use Girsanov’s theorem. We
conclude that two- or three-dimensional models will be needed to get sat-
isfactory results. We focus on these here, for their good tractability and
implementability.

Our first model of this kind will be an additive model (which we will again
call G2++), of the form

rt = xt + yt + φ(t), (G2 + +)

where φ(t) is a deterministic shift, added in order to fit exactly the initial zero-
coupon curve,. The main advantage of this over the CIR++ model of III.7
is that we need to take the correlation ρ between the two Brownian motions
W1, W2 there to be 0 to obtain an analytically tractable model, whereas here
we do not need to do so. The reason for this is that in the CIR++ case, with
ρ non-zero we obtain square-root non-central chi-square processes. These
are much harder to handle than linear Gaussian processes; it would not
be possible to compute bond prices analytically, and the distribution of r
would become intractable. The reason why G2++ is so much preferable to
CIR++ here is that the extra correlation parameter ρ gives us much more
modelling flexibility. Moreover, ρ < 0 allows for a humped volatility curve of
the instantaneous forward rates, as seen in practice. Indeed, if we consider
at time t the graph of the T -function

T 7→
√
var(df(t, T )/dt),

where the instantaneous forward rate f(t, T ) comes from the G2++ model, it
can be seen that for ρ = 0 this function is decreasing and concave upwards.
The function can only assume a humped shape when ρ < 0. Now since
humped-shaped curves are seen in market behaviour, this is an important
advantage for G2++.

In the reverse direction, CIR++ does have advantages over G2++. The
distribution of the short rate there is that of the sum of two independent
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non-central chi-square random variables, and as such has fatter tails than
that of the Gaussian laws in G2++. Since nearly all financial data also have
fatter tails than Gaussian, this is desirable – and may more than offset the
loss of tractability. Also, CIR++ spot rates are affine transformations of such
non-central chi-squares, and are closer to the log-normal than the Gaussians
for the same rates implied by G2++. Of course, log-normally distributed
random variables are positive (as in the Black-Scholes model: prices are log-
normal and positive, log-prices and returns are normal and change sign). So
this is a second advantage for CIR++ over G2++ – but the ability of G2++
to model humped-shaped curves is very important. One cannot have both;
one has to choose; the choice will depend on the context – what one is trying
to model, and why. In weighing up pros and cons for, say, two-factor models,
one might ask questions such as:
Is the model flexible enough to be calibrated to a large set of swaptions, or
even to caps and swaptions at the same time?
How many swaptions can be calibrated satisfactorily?
What evolution of the term structure of volatilities is implied by the cali-
brated model?
Is this realistic?
How can one implement trees for the model?
Is Monte-Carlo simulation feasible?
Can the model be used for products depending on more than an interest-rate
curve, taking into account correlations between different interest-rate curves,
exchange rates, etc?
Here, we will focus mainly on G2++, and address some of these questions.
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