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3. G2++: Gaussian two-factor additive models

We follow [BM, 4.2]. Taking the mean reversion level to be 0 for conve-
nience, we recall the model:

rt = xt + yt + φ(t), r(0) = r0, (G2 + +)

where
dxt = −axtdt+ σdW1(t), x(0) = x0,

dyt = −bytdt+ ηdW2(t), y(0) = y0,

where (W1,W2) is a two-dimensional correlated Brownian motion with cor-
relation ρ:

dW1(t)dW2(t) = ρdt.

Here r0, a, b, σ, η are positive constant, and ρ ∈ [−1, 1]. The function φ is
deterministic, and defined in the time-interval [0, T ∗], where T ∗ is the relevant
time-horizon, typically 10 years, 30y or 50y. In particular,

φ(0) = r0

(to get a fit at the initial time t = 0). We write Ft for the σ-field generated
by the bivariate process (x, y) up to time t.

The SDE above is of OU type. Proceeding as there, we find, for each
s ∈ [0, t]

rt = xse
−a(t−s) + y + se−b(t−s)

+σ

∫ t

s

e−a(t−u)dW1(u)

+η

∫ t

s

e−b(t−u)dW2(u) + φ(0).

So rt|Fs is normal, with conditional mean and variance

E[rt|Fs] = xse
−a(t−s) + yse

−b(t−s) + φ(t),

var(rt|Fs) =
σ2

2a
[1− e−2a(t−s)] +

η2

2b
[1− e−2b(t−s)] + 2ρ

ση

a+ b
[1− e−(a+b)(t−s)].
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In particular,

rt = σ

∫ t

s

e−a(t−u)dW1(u) + η

∫ t

s

e−b(t−u)dW2(u) + φ(0).

Bond pricing
As before,

P (t, T ) = Et[exp{−
∫ T

t

rsds}],

with P (t, T ) the price at time t of a ZCB with unit face value (payoff 1)
maturing at T , and E = EQ. To compute this, we need the following Lemma
(the proof is not difficult, but is omitted).

Lemma. In the above, the random variable

I(t, T ) :=

∫ T

t

[xu + yu]du

conditional on Ft is normal with mean

M(t, T ) =
1− e−a(T−t)

a
xt +

1− e−b(T−t)

b
yt

and variance

V (t, T ) =
σ2

a2
[T − t+

2

a
e−a(T−t) − 1

2a
e−2a(T−t) − 3

2a
]

+
η2

b2
[T − t+

2

b
e−b(T−t) − 1

2b
e−2b(T−t) − 3

2b
]

2 + ρ
ση

ab
[T − t+

e−a(T−t) − 1

a
+
e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b
].

Proposition. In the above,

P (t, T ) = exp{
∫ T

t

φ(u)du−M(t, T ) +
1

2
V (t, T )}.

Proof. As φ is deterministic, this follows from the Lemma and the fact that
if Z ∼ N(mZ , σ

2
Z), then (taking t = 1 for the argument of the MGF)

E[exp{Z}] = exp{mZ +
1

2
σ2
Z}. //
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Now suppose that the term structure of discount factors D(t, T ) that is
currently observed in the market (recall P (t, T ) = E[D(t, T )]) is given by
the sufficiently smooth function

T 7→ PM(0, T )

(‘M for market’ here). If fM(0, T ) is the corresponding instantaneous forward
rate at time 0 for maturity T , i.e.

fM(0, T ) =
∂

∂T
logPM(0, T ),

then we have the following (proof omitted: [BM, 4.2.2]):

Proposition. The G2++ model fits the currently-observed term structure
of discount factors iff, for each T ,

φ(T ) = fM(0, T ) +
σ2

2a2
(1− e−aT )2 +

η2

2b2
(1− e−bT )2

+ρ
ση

ab
(1− e−aT )(1− e−bT ),

i.e. iff

exp{−
∫ T

t

φ(u)du} =
PM(0, T )

PM(0, t)
exp{−1

2
[V (0, T )− V (0, t)]},

so that the corresponding ZCB prices at t are given by

P (t, T ) =
PM(0, T )

PM(0, t)
exp{A(t, T )},

where

A(t, T ) :=
1

2
[V (t, T )− V (0, T ) + V (0, t)]− 1− e−a(T−t)

a
xt −

1− e−b(T−t)

b
yt.

Note.
One might think, at first sight, that in order to implement the G2++

model we need to derive the whole φ curve, and so the market instantaneous
forward curve

T 7→ fM(0, T ).
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Now, this curve involves differentiating the market discount curve

T 7→ PM(0, T ),

which is usually obtained from a finite set of maturities via interpolation.
Now interpolation (obtaining a curve from its values at a finite set of points –
there are various ways of doing this; the relevant subject is Numerical Anal-
ysis) involves a degree of approximation. Again from Numerical Analysis:
numerical differentiation is a dangerous process (integration is a smoothing
process, which gains accuracy; differentiation makes things rougher, which
loses accuracy). Interpolation followed by numerical differentiation is asking
for trouble.

But, in fact we do not need the whole φ curve here. Instead, what we
actually need is the integral of φ between two time-points – and we have cal-
culated this above. From this expression, we see that the only curve needed
is the market discount curve, which need not be differentiated, and only at
times corresponding to the maturities of the bond prices and rates desired,
thus limiting also the need for interpolation. This is a good illustration
of how, although the mathematics of interest rates is in principle infinite-
dimensional, in practice we can often confine ourselves to finite-dimensional
situations, corresponding to the tenor structure – of bonds etc. actually
traded in the market. We shall use this systematically in Ch. V below on
market models.

Short-rate distribution and probability of negative rates
By fitting the currently-observed term structure of discount factors, we

find that the expected instantaneous short rate at time t is

µr(t) := E[rt]

= fM(0, t) +
σ2

2a2
(1− e−at)2 +

η2

2b2
(1− e−bt)2 + ρ

ση

ab
(1− e−at)(1− e−bt),

while the variance σ2
r(t) of the spot rate at t is

σ2
r(t) := var(rt)

=
σ2

a2
(1− e−2at) +

η2

b2
(1− e−2bt) + 2ρ

ση

ab
(1− e−(a+b)t).

This implies that the risk-neutral probability of negative rates at time t is

Q(rt < 0) = Φ(−µr(t)/σr(t)),
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with Φ = N(0, 1) the standard normal distribution function, as usual. This
is often negligible – as one would expect, as interest rates are traditionally
positive!

Note.
If one tries to use the G2++ model, as here, after the beginning of the

Crash of 2007, one often finds that the probability of negative interest rates
has increased dramatically. This is because the interest rates µ observed
since then have been low (unprecedentedly low historically – Ch. I), and
volatilities σ have been high (again, unprecedentedly high). So µ/σ has been
low, as it reflects both of these. Now Φ(0) = 1

2
(by symmetry, and Φ(x) ↓ 0

as x→ −∞. So Φ(−x) is small for large x, but large (↑ 1
2
) for small x. Thus

the formula above reflects the reality of 2007 and after – which has changed
everything: world politics, the world economy, the world financial system –
and our subject of Interest Rates in particular.

Limit distributions
Like the Ornstein-Uhlenbeck (OU) model to which it is related, the G2++

model has a limit (stationary, equilibrium, ergodic) distribution as time t→
∞. The limit law is Gaussian, with mean and variance given by

µr(∞) := lim
t→∞

E[rt] = fM(0,∞) +
σ2

2a2
+

η2

2b2
+ ρ

ση

ab
,

σ2
∞ := lim

t→∞
var(rt) =

σ2

2a
+
η2

2b
+ 2ρ

ση

a+ b
.

Volatility and correlation in 2-factor models
We now derive the dynamics of forward rates under the risk-neutral mea-

sure. This gives an equivalent formulation of the two-factor additive Gaussian
model in the Heath-Jarrow-Morton (HJM) framework. In particular, we ex-
plicitly derive the volatility structure of forward rates. This also shows us
which market-volatility structures can be fitted by the model.

Define A(t, T ) and B(z, t, T ) by

A(t, T ) =
PM(0, T )

PM(0, t)
exp{1

2
[V (t, T )− V (0, T ) + V (0, t)]},

B(z, t, T ) :=
1− e−z(T−t)

z
.
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So
P (t, T ) = A(t, T ) exp{−B(a, t, T )xt −B(b, t, T )yt}.

The forward rates are given by

f(t, T ) = − ∂

∂T
logP (t, T )

= − ∂

∂T
logA(t, T ) +

∂B

∂T
(a, t, T )xt +

∂B

∂T
(b, t, T )yt,

which in differential form is

df(t, T ) = [· · ·]dt+
∂B

∂T
(a, t, T )σdW1(t) +

∂B

∂T
(b, t, T )ηdW2(t).

So

var(df(t, T ))

dt
=

(∂B
∂T

(a, t, T )σ
)2

+
(∂B
∂T

(b, t, T )η
)2

+ 2ρση
∂B

∂T
(a, t, T )

∂B

∂T
(b, t, T )

= σ2e−2a(T−t) + η2e−2b(T−t) + 2ρσηe−(a+b)(T−t)

(recall that for random variables X, Y ,

var(X + Y ) = var(X) + 2cov(X, Y ) + var(Y ).)

So the volatility (standard deviation (SD) – square root of the variance above)
of the instantaneous forward rate is

σf (t, T ) =
√
σ2e−2a(T−t) + η2e−2b(T−t) + 2ρσηe−(a+b)(T−t).

Now (as we saw before) a humped-shaped volatility structure is com-
monly observed in the market for caplets etc. We see immediately from this
that desirable feature – a humped-shaped curve – can only be produced in
this model for negative correlation ρ. So when calibrating this model to the
market, we need ρ < 0. Not all such cases work, but there do exist such
choices of parameter values that do.

Options in G2++
Given current time t and future times T1 < T2, a caplet pays off at time

T2
[L(T1, T2)−X]+α(T1, T2)N,
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where N is the nominal value (‘N for nominal’ – not for normal, here),
α(T1, T2) is the year fraction between times T1 and T2, X is the strike and
L(T1, T2) is the LIBOR rate at time T1 for maturity T2, i.e.

L(T1, T2) =
1

α(T1, T2)
[

1

P (T1, T2)
− 1].

Writing

X∗ :=
1

1 +Xα(T1, T2)
, N∗ = N(1 +Xα(T1, T2)),

we have

Cpl(t, T1, T2, N,X) = E[D(t, T2)(L(T1, T2)−X)+α(T1, T2)N ]

= −N∗P (t, T2)Φ
( log(NP (t, T1)/N

∗P (t, T2))

Σ(t, T1, T2)
− 1

2
Σ(t, T1, T2)

)
+NP (t, T1)Φ

( log(NP (t, T1)/N
∗P (t, T2))

Σ(t, T1, T2)
+

1

2
Σ(t, T1, T2)

)
,

where Σ(t, T, S)2 is a sum of three terms,

Σ2
1 :=

σ2

2a3
[1− e−a(S−T )]2[1− e−2a(T−t)],

Σ2
2 :=

η2

2b3
[1− e−b(S−T )]2[1− e−2b(T−t)],

Σ2
3 := 2ρ

ση

ab(a+ b)
[1− e−a(S−T )][1− e−b(S−T )][1− e(a+b)(S−T )].

From caplets one gets caps by adding up. Floorlets and floors are completely
analogous. For the details, see Brigo & Mercurio [BM, §4.2.4].

4. What do we measure? What should we measure? What is ran-
dom?

The situation here is (though more complicated) rather like that with
stock prices in MATL480, but there are differences. Prices evolve randomly;
at time t – ‘now’ – we know the current stock price St. The risk-free interest
rate r of MATL480 (constant, non-random and known there) corresponds to
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the spot rate, the stochastic process r = (rt) here in MATL481. We can’t
measure this directly; what we can measure is bond prices P (t, T ). Recall:

P (t, T ) = Et[exp{−
∫ T

t

rsds}]. (P, r)

So r is inaccessible here: it is linked with P (t, T ), which we can see, but hid-
den behind both an expectation (Et is conditional expectation, given what
we know now at time t, over the uncertainty over the relevant time-interval
[t, T ] extending into the future), and an integration.

Note that the bond price P (t, T ) above is non-random, in one sense: we
know it at time t; it’s the price that ZCBs with maturity T are selling at.
But it is random, in another sense (see below): it is a conditional expectation,
and (MATL480) a conditional expectation is random, as it is a function of
what we are conditioning on, and that is itself random.

There is much to be said here, but for simplicity: we will generally use
‘random’ to mean things depending on the still-uncertain future, and ‘known’
to mean things we know now.

Randomness
Regarding randomness, recall again the simpler case of stock prices S =

(St). Future stock prices are uncertain, because we live in an uncertain
world. Past stock prices are known – we can look them up; but they are
still random, in the sense that they once were (as they were still in the
future once). Of course, all this goes back to the basics of Probability and
Statistics. In Probability, we need to know the mechanism generating the
randomness (the relevant distributions, or models); we can then carry out the
necessary calculations (e.g., of the probability that this or that will happen).
In Statistics, the basic raw material is data; we seek to use the information
in the data to infer what the underlying mechanism generating it is. Think
of tossing a coin, ten times, say. While the coin is still in the air spinning,
the value it comes down as (1 for head, 0 for tail) is still unknown; the
outcome is a random variable. When the coins have fallen, the outcomes are
data (ten-tuples of 0s and 1s, in this case). They are known (in that we have
them written down as numbers); they are realised values of random variables.
We can think of this (the essence of the interplay and contrast between
the twin subjects of Probability and Statistics, by the way) as ‘fossilised
randomness’: they are known (above); they could have been different; they
would be different if we did it again. We see this all the time – e.g., in
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ourselves. We inherit our genes – from our parents/God/Mother Nature;
we could have been different (indeed, our siblings are – even with identical
twins!); we’re not – we’re stuck with what we’ve got.

By contrast, the forward rate f(t, T ) is non-random (in the sense above:
it’s a function of the bond prices P (t, T ), known at time t – “now”). It is
given by

P (t, T ) = exp{−
∫ T

t

f(t, u)du}, f(t, T ) = − ∂

∂T
logP (t, T ). (P, f)

There is no expectation here, but we still can’t get at f directly: it involves
a differentiation wrt time T in the future. We do have bond prices P (t, T )
involving T , but we only have them for a discrete set of T s, the Ti (given
by the tenor structure), and so differentiation (which would have to be done
numerically) can be done only in theory (as in (P, f) above) and not in prac-
tice.

What is needed is an approach in which we focus on things we can see
and measure – the P (t, T ) – and not on the spote-rates rt and forward-rates
f(t, T ) above. For this we need the market models, which are the subject of
Ch. V (W4ab,5ab,6a) in Part II of this course, below.

Rates, and measuring them.
It is possible to measure rates, as is done on vehicle speedometers (via

a cable from the front wheel), speed cameras (for monitoring vehicle speeds
in restricted areas), etc. But this needs special equipment, and is subject to
measurement error (as are all measurements – except counts). This is one
reason why the spot rates rt of Ch. III and the forward rates f(t, T ) of Ch.
IV are unsatisfactory: it is difficult to measure them. Indeed, we cannot
measure them directly; what we can measure is some proxy for them. As
we saw in I.1 Note 2 (W1a) and II.1 (W2a), LIBOR is the one most used
now, but as it has proved problematic (because of market manipulation), it
is planned to be phased out and replaced by Sonia.

Market models (preview).
The problems concerning rates (above), which are instantaneous, can be

avoided by dealing with things that relate to time-intervals. For example,
LIBOR relates to [t, T ], with t ‘time now’, and T the end of the time-interval
for which the rate is being quoted. Similarly, forward LIBOR deals with time
t now and a time-interval [T, S] in the future. These determine the prices of
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interest-rate derivatives, such as the forward-rate agreements (FRAs) in Ch.
II. These are highly liquid (heavily traded): there are many such (hundreds),
but the amounts of money involved (trillions) are so huge that we know their
prices. We don’t have to model them: we can see them. As we shall see (Ch.
V), calibration of market models to such market data is largely a matter
of correlations (between rates for different time-intervals), and volatilities
(reflecting market uncertainty, as with stock prices).
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