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8. LMM: Calibration to market data

Market models were introduced in 1997, and have become by far the most
important models in use in interest-rate theory. So they deserve a study in
some depth and detail. Note that they have been around for twenty years
now, ten pre-Crash and ten post-Crash. So they have stood the test of time,
and shown the flexibility needed to adjust to the very different conditions of
the world post-Crash.

One of the main reasons why market models have taken over centre-stage
– and why they got their name – is that they allow practitioners to cali-
brate their models to market data. Such data is very extensive. The market
in interest-rate products amounts to trillions of dollars; most of this is in
the few hundred most heavily traded products. So these are highly liquid.
The ability to perform well in trading – principally, pricing and hedging –
depends on, among other things, the ability to model (above – Probability
and Stochastics), and to handle and interpret data (Statistics, and Numerical
Analysis). Small advantages matter (recall that practitioners think in terms
of basis points (bp) – hundredths of a percent. But such small fractions of
trillions is still a very large amount ... .

For more on market models generally, see e.g. [BM, Part III Ch. 6-8]; for
more on calibration, see e.g. [BM, 6.4, 6.17, Ch. 7].

Inputs:
standard liquid products:
FRAs, swaps, caps, ...
Model:
LMM: correlations ρ, volatilities σ, ...
Outputs:
Exotic products: ratchet caps, constant maturity swaps (CMS), ...
Prices, hedges and risk.

LMM is natural for caps, and SMM is natural for swaptions. We choose
LMM, and adapt it to price swaptions later.

Recall: under numeraire P (., Ti) 6= P (., Tk),

dFk(t) = µi
k(t)Fk(t)dt+ σk(t)Fk(t)dZk, dZdZT = ρdt.
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Model specification: Choice of σk(t) and ρ.
The LMM is completely specified once we specify the σk(t), ρij and Fk(0) for
all i, j, k in the tenor structure – that is, for all the relevant times, at which
we have data.

Parametrisation of instantaneous covariances
Divide the relevant time-range into intervals (0, T0], (T0, T1], · · · , (TM−2, TM−1].

With these intervals labelling the rows in the covariance matrix, and the
forward rates F1(t), · · · , FM(t) labelling the columns, the entries above the
diagonal will correspond to expired products, so are omitted. The matrix is
thus ‘diagonal + sub-diagonal’. Drawing a picture will produce a ziggurat
shape.
General piecewise constant (GPC) vols are of the form

σk(t) = σk,N(t), TN(t)−2 < t ≤ TN(t)−1.

Separable piecewise constant (SPC):

σk(t) = Φk.ψk−(N(t)−1).

Parametric linear-exponential (LE) vols:

σi(t) = Φi.ψ(Ti−1 − t; a, b, c, d) = Φi.([a(Ti−1 − t) + d]e−b(Ti−1−t) + c)).

Caplet volatilities
Recall that under numeraire P (., Ti),

dFi(t) = σi(t)Fi(t)dZi, dZdZT = ρdt.

Caplet: strike rate K, reset Ti−1, payment Ti: payoff τi(Fi(Ti−1) − K)+ at
Ti.
This corresponds to a call option on Fi, which is lognormal under Qi. This
gives Black’s formula with Black volatility parameter

v2i−cap :=
1

Ti−1

∫ Ti−1

0

σi(t)
2dt;

vi−cap is the Ti−1-caplet volatility.
Only the volatilities σs have any impact on caplet (and so on cap) prices; the
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correlations ρ have no effect.
GPC vols:

v2i−cap =
1

Ti−1

i∑
j=1

(Tj−1 − Tj−2)σ2
ij.

LE vols:

Ti−1v
2
i−cap = Φ2

i

∫ Ti−1

0

(([a(Ti−1 − t) + d]e−b(Ti−1−t + c)2dt.

For GPC, caplet volatilities can be computed very simply, as follows.
Take the volatilities matrix (ziggurat-shaped):
(a) Square each entry.
(b) For each row, sum the squared terms, each multiplied by the year-fraction
expiry-to-maturity τ for that volatility.
(c) Take the total in (b) and divide it by the caplet reset time (= sum of all
τs used in that row).
(d) Take the square root.

Term structure of caplet volatilities (TSOV)
The term structure of volatility (TSOV) at time Tj is a graph of expiry

times Tk−1 against average volatilities V (Tj, Tk−1) of the related forward rates
Fk(t) up to that expiry time itself, i.e. for t ∈ (Tj, Tk−1). So at time t = Tj,
this is a graph of points

{(Tj+1, V (Tj, Tj+1)), (Tj+2, V (Tj, Tj+2)), · · · , (TM−1, V (Tj, TM−1)), },

V 2(Tj, Tk−1) =
1

Tk−1 − Tj

∫ Tk−1

Tj

σ2
k(t)dt, k > j + 1.

In the ziggurat matrix, we can easily compute the future TSOV at time
Tj much as before:
(a) Square each entry. Starting from the column corresponding to the de-
sired future time, in each row add up all the squares up to the diagonal, each
multiplied by the relevant year-fraction τ .
(b) Take the total in (a); divide by the sum of the τ used; take the square
root.
(c) To compute the TSOV at all future times, a calculation with cumulative
sums of squares going backwards is ideal.
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Example.
Implement with:

Semi-annual tenors, Ti − Ti−1 = 6m;
Instantaneous correlation matrix estimated historically, first fitted on the
full-rank parametric form

ρ∞ + (1− ρ∞) exp{−α|i− j|},

and then possibly fitted to a reduced-rank correlation (no impact on caps,
but needed for ratchets etc.; more on this later).

Three specimen choices:
First plot: Φ = 1 (homogeneous in time-to-expiry).
Second plot: ψ = 1 (homogeneous in time).
Third plot: intermediate (neither Φ nor ψ set to 1).

If traders have no view on future TSOV, they prefer a stationary model,
so use the first plot, Φ = 1.

In the second plot, with ψ = 1, the TSOV ‘collapses onto its own tail’ –
‘flattens out to zero; – as time evolves. Traders do not like this: it assumes
future volatilities will be much lower than current ones. Unless there is good
economic reason to believe this (there isn’t!), this choice should be avoided,
although it is the one that makes calculations and calibration easiest, and
makes terminal and instantaneous correlations equal (see below).

So realistically, we will get something like the third plot – roughly sta-
tionary, but showing some evolution, with the Φs close to 1 but not exactly 1.

Terminal and instantaneous correlation

Swaptions depend on terminal correlations among forward rates. For
example, the swaption whose underlying is S1,3 depends on

corr(F2(T1), F3(T1)).

This terminal correlation depends both on the instantaneous correlation ρ2,3
and on the way the T1 − T2 and T2 − T3 caplet volatilities are decomposed
into instantaneous vols σ2(t) and σ3(t) for t ∈ [0, T1]. Under GPC vols,

corr(F2(T1), F3(T1)) ∼ ρ2,3
σ2,1σ3,1 + σ2,2σ3,2

v1
√
T1

√
σ2
2,1 + σ2

2,1

,

4



in our previous notation. No such formula holds for general short-rate mod-
els! This shows again why market models matter – and why they are worth
taking the trouble to study in detail.

For more on calibration in practice, see
[Sid] J. SIDENIUS, LIBOR market models in practice. J. Computational
Finance 3:3 (2000), 5-26.

9. Instantaneous correlation: parametric forms

Swaptions depend on terminal correlation among forward rates (ρs and
σs). How do we model ρ? But first, what general patterns would we like the
correlation matrix to show?

Corrrelation matrices have 1 on the diagonal, and are symmetric, so we
confine attention to the subdiagonal part. As we move away from the di-
agonal, we expect the entries to decrease: the movement of the 6m-1y rate
will be more correlated with that of the 1y-1y6m rate than with that of the
9y-9y6m rate. The entries are also expected to increase along the subdiago-
nals. For, the curve is expected to move more rigidly (more correlated) for
long maturities than for short ones. We are very sensitive to expectations of
changes between now and in 6 months. We do not have the predictive capa-
bility to be sensitive to the difference between 30y from now and 30y6m.

To reflect all this, various parametric forms have been proposed. We turn
now to some of the principal ones. Note that we are dealing here with ma-
trices. These are studied in Linear Algebra in Mathematics – the study of
vector spaces, linear transformations between them, matrices, determinants
etc. Depending on your background here, you may wish to revise what you
have learned, or learn for yourself (that is what libraries are for!). You may
find the following link on my homepage useful:
NHB, SMF (Statistical Methods for Finance), Ch. III (Multivariate Analy-
sis).
Multivariate Analysis forms an important part of Statistics. Numerical Lin-
ear Algebra forms an important part of Numerical Analysis. Both are stiff
with matrix theory.

You will find the idea of the rank of a matrix important. This is the
maximum number of linearly independent rows (or columns). If this is as big
as it could be given the size of the matrix (which need not be square), the
matrix has full rank. This is the general, or typical, or non-degenerate case.
Otherwise the matrix has defective rank. Exceptional cases are usually of this
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kind. For example: the multivariate normal distribution N(µ,Σ) splits into
the full-rank case – the covariance matrix Σ is non-singular, and there is a
density (given by Edgeworth’s theorem, below), and the defective-rank case.
This is degenerate in the original dimensionality, but not in the appropri-
ate lower dimension – so one should start again, and work there. Example:
temperature in Centigrade and Fahrenheit. Each determines the other (just
match up freezing and boiling points of water) – so the situation is really
one-dimensional, rather than two.

The Multinormal Density; Edgeworth’s theorem.
If X is n-variate normal, N(µ,Σ), its density (in n dimensions) need not

exist (e.g. the singular case ρ = ±1 with n = 2). But if Σ > 0 (so Σ−1

exists), X has a density. The link between the multinormal density below
and the multinormal CF (or MGF) is due to the English statistician F. Y.
Edgeworth (1845-1926) in 1893; see e.g. SMF, IV.3.

Theorem (Edgeworth, 1893)). If µ is an n-vector, Σ > 0 a symmetric
positive definite n× n matrix, then
(i)

f(x) :=
1

(2π)
1
2
n|Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)}

is an n-dimensional prob. density function (of a random n-vector X, say);
(ii) X has CF φ(t) = exp{itTµ− 1

2
tTΣt}, MGF φ(t) = exp{tTµ+ 1

2
tTΣt};

(iii) X is multinormal N(µ,Σ).

The following paper has been important for what follows:
[SC] J. SCHOENMAKERS and B. COFFEY: Systematic generation of para-
metric correlation structures for the LIBOR market model. Internat. J.
Theor. Appl. Finance 6 (2003), 507-519.
You can see how recent some of the major developments are! You should bear
this in mind when choosing a book. We have drawn here on [BM, 6.9.1]. This
material is important, but not mentioned in most earlier books.

Full-rank parametric forms for instantaneous correlations ρ

Schoenmakers and Coffey propose a finite sequence

1 = c1 < c2 < · · · < cM , c1/c2 < c2/c3 < · · · < cM−1/cM ,
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and they set (F here stands for Full (Rank))

ρF (c)ij := ci/cj, i ≤ j, i, j = 1, · · · ,M. (SC − c)

So the correlation between changes in adjacent rates is

ρFi+1,i = ci/ci+1;

these are all < 1, and are increasing in i. Both these are desirable features,
in view of the above.

So: under (SC), the subdiagonal of the correlation matrix ρF (c) is in-
creasing when moving from NW to SE. Interpretation: as we move along the
yield curve, the larger the tenor, the more correlated changes in adjacent
forward rates become. This corresponds (not only to the expectation above,
but also) to the experienced fact that the forward curve tends to flatten, and
to move in a more correlated way, for large maturities than for small ones.

The number of parameters needed for a Schoenmakers-Coffey matrix is
M , rather than the 1

2
M(M − 1) parameters needed for a general correlation

matrix of the same size. Schoenmakers and Coffey showed (we quote this)
that any matrix as in (SC − c) is permissible here, and gave an alternative
parametrisation, (SC −∆) below:

Theorem (Schoemmakers-Coffey, 2003).
(i) Any matrix C = (cij) satisfying (SC − c) is a genuine correlation matrix
– symmetric, positive semi-definite and with 1s on the diagonal.
(ii) This parametrisation can be characterised alternatively in terms of

∆2, · · · ,∆M ≥ 0 :

ci = exp{
i∑

j=2

j∆j +
M∑

j=i+1

(i− 1)∆j}. (SC −∆)

Some useful particular cases of SC parametrisations are as follows. First,
take all the ∆s zero except for the last two. Then changing notation one has:

ρi,j = exp{− |i− j|
M − 1

(
− log ρ∞ + η

M − 1− i− j
M − 2

)
}.

This is a promising choice for parametrisation of correlation: it is:
(a) two-parameter;
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(b) stable (numerically – small changes in the c-parameters cause small
changes in the two parameters, ρ∞ and η;
(c) full rank;
(d) increasing along subdiagonals.
Note that ρ∞ = ρ1,M is the correlation between the rates furthest apart,
whereas η is related to the first non-zero ∆, which comes at the end:

η =
1

2
∆M−1(M − 1)(M − 2).

A three-parameter form is obtained with the ∆s following a straight line
(two parameters) until the last one, whose value is the third parameter. This
leads to a stable, full-rank, 3-parameter parametrisation increasing along
subdiagonals,

ρi,j = exp{−|i− j|
(
β − α2

6M − 18
(i2 + j2 + ij − 6i− 6j − 3M2 + 15M − 7)

+
α1

6M − 18
(i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 3M2 − 65M + 2)

)
},

which we call (SC3) (3-parameter SC). However, experience has shown that
the final Delta, ∆M−1, is nearly always close to zero. So we lose little, but
gain in simplicity, by moving to the two-parameter version of (SC3):

ρi,j = exp{−|i−j|
(
− log ρ∞+η

(i2 + j2 + ij − 3Mi− 3Mj + 3i+ 3j + 2M2 −M − 4)

(M − 2)(M − 3)

)
}.

(SC2)
As before, ρ∞ = ρ1,M , whereas η is related to the steepness of the straight
line in the ∆s.
Full-rank, two-parameter, exponentially decreasing parametrisation

Schoenmakers and Coffey also introduced the model

ρi,j = ρ∞ + (1− ρ∞) exp{−β|i− j|}, β ≥ 0.

Here ρ∞ still represents the correlation between the ends, but only asymp-
totically (let j →∞).
Rebonato’s model.

Rebonato (1999) introduced the model

ρi,j = ρ∞ + (1− ρ∞) exp{−|i− j|(β − α(max(i, j)− 1))}.
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This still has the desirable property of being increasing along subdiagonals.
However, the matrix is not positive definite for all values of the three param-
eters α, β, ρ∞.

Note that the last Schoenmakers-Coffey model above (2003) is a simpli-
fication of the Rebenato model above (1999). It is also superior, in that the
matrix is always positive definite.

Reducing the rank

In M dimensions, we have an instantaneous correlation matrix ρ. We
may be able to factorise ρ, at least approximately, as

ρ = BBT ,

with B an M × n matrix with n much less than M :

n << M.

This reduces the complexity enormously! So if we can do this, we should. In
terms of the relevant SDEs and driving noise, the replacement is

dZdZT − ρdt 7→ BdW (BdW )T = BBTdt.

Note: Regression.
In regression, we encounter similar ‘long thin matrices’. The design ma-

trix A = (aij) is n× p, where n is the sample size (as large as possible) and
p is the number of parameters (as small as possible) – ao p << n. There are
two associated square matrices:
(i) the information matrix C := ATA (‘(p× n)× (n× p)’, so p× p);
(ii) the projection matrix P := AC−1AT (‘(n × p) × (p × p) × (p × n)’, so
n × n), also called the hat matrix H, as it takes the data y into the fitted
values ŷ = Py.
So one needs to be careful about matrix size and transposes!. For background,
see e.g.
[BF] N. H. BINGHAM and J. M. FRY, Regression: Linear models in statis-
tics, Springer, 2010, §3.4, §3.6.
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Eigenvalues

As ρ is a real positive-definite (PD) symmetric matrix, it can be written

ρ = PHP T ,

where P is orthogonal,
P TP = PP T = IM ,

and H is a diagonal matrix of the eigenvalues of ρ, which are positive (see e.g.
SMF, III.1). The columns of P are the eigenvectors of ρ, and the same order
as their corresponding eigenvalues. Letting Λ be the diagonal matrix whose
entries are the square roots of the corresponding entries of H, so ΛΛ = H,
and with

A := PΛ,

we can write Λ = H
1
2 (or

√
H – for background on such matrix square roots

and their inverses, see e.g. SMF III.1), and we have

AAT = ρ, ATA = H.

We can now try to mimic the rank-M decomposition ρ = AAT by a suit-
able rank-n decomposition, with B an M × n matrix as above and BBT a
rank-n correlation matrix, with n << M . This will result in a great decrease
in computation, and be worth some approximation to achieve.

Eigenvalue-zeroing

To do this, we rank the eigenvalues (which are positive) in decreasing
order. For a rank-n approximation, we neglect the M −n smallest (in effect,
replacing them by zero), retaining only the n largest. This relates to the
statistical technique of principal components analysis (PCA) (SMF, III), and
is called eigenvalue-zeroing in mathematical finance. If Λn is the diagonal
matrix so obtained, write

Bn := PΛn.

The resulting candidate correlation matrix is then

ρ(n) := BnB
T
n .
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However, ρn may not have 1s on its diagonal. So, we interpret it as a covari-
ance matrix, and pass to the corresponding correlation matrix ρ(n) by

ρ
(n)
ij := ρ

(n)
ij /

√
ρ
(n)
ii ρ

(n)
jj .

According to the Eckart-Young theorem (SMF, III), this ρ(n), which is a
rank-n approximation to the original rank-M matrix ρ, is the best rank-n
approximation (in the sense of the Frobenius norm for matrices). See e.g.
SMF, III.

One method of implementing this rank reduction is in terms of Rebon-
ato’s angles (1999). For a detailed study, with numerical examples, see [BM,
6.9.2,3].
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