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10. Monte-Carlo pricing of swaptions with LMM

Recall our study of swaptions above (V.4). In the notation used there,

k k
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this depends on the joint distribution under Q; of

Recall the dynamics of forward rates under Q;:
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Numerical solution of the SDE.

This SDE, like most SDEs, must be solved numerically (the two main
exceptions are, fortunately, the two we meet earliest - OU and GBM). There
is a whole field on numerical solutions of SDEs — a combination of numerical
solution of ODEs and PDEs within Numerical Analysis, and SDEs within
Probability. The standard work, for reference, is
[KP] Peter E. KLOEDEN and Eckhard PLATEN, Numerical solutions of
stochastic differential equations, Springer, 1992.

There, one will find the Milstein scheme [KP, 10.3], which is a discretisation.
The Milstein scheme for log F}, here gives

T At
Pr,jTil' At_lgk(t)2dt+ak(t)(Zk(t—i-At)_Zk(t))‘

k
log FAY (t+At) = log FA () +ok(t) — L
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This leads to an approximate solution with strong convergence properties:
Ei[|log FAUT;) —log Fi(Ty)|] < C(T)At VAL < &,

where C(T;) > 0 is a constant. Now (Zy(t + At) — Zk(t)) is Gaussian and
known (that is, its mean and variance, and so being Gaussian, its distribu-
tion, are known). So this is easy to simulate, by Monte Carlo (MC), below.

Monte-Carlo estimation

Assume we need to value a payoff I1(T") depending on the realisation of
different forward LIBOR rates

F(t) = (Fua(t), -+ Fu(t)"

in a time-interval ¢ € [0, T'], where typically T' < T;. We have seen a particular
case of II(T") = II(7T;) as the swaption payoff. The simulation scheme above
for the rates entering the payoff provides us with the F's needed to form
scenarios of II(T"). Denote by a superscript the scenario (or path) under
which a quantity is considered, and the number of paths by n,. Then the
Monte-Carlo simulated price of our payoff is

EID(0, TYI(T)] = P(0, T)Er[I(T)] = PO T).-- S,



where the forward rates F; entering II,(7") have been simulated under the
T-forward measure. We omit the T-arguments to save notation: all distri-
butions, means, variances etc. are under the T-forward measure. However,
the argument is general and extends to any other measure.

We turn to estimating the error of this MC estimate. Take a sequence
II; of independent and identically distributed (iid) random variables, with
the distribution of II. By the Central Limit Theorem, writing SD for the
standard deviation (square root of the variance), we have the convergence in

distribution .
> ;2 (I — EI0))
\/n_pSD(H)

as n, increases. So for large n,, we have approximately

— ® = N(0,1)

LS, - s~ Sifl_mmo,l),

in an obvious notation. So

(|- 31, B <€) = Qe(IN(O,1)| < ey/m/SD(D)
— 20(eymy/SD(I) — 1,

where as usual ® denotes the distribution function N(0,1) of the standard
Gaussian random variable. All this is familiar from a first course on Statistics,
in particular, confidence intervals. From tables of P,

20(z) —1=0.98 < ®(2) = 0.99 < z ~ 2.33.

So choosing
€ = 2.33SD(I)//n,,

E[I1] lies in the ‘window’ between the bounds

1 &
— > 10, £2.335D(11)//n,
P j=1

with probability 98 %, giving a 98% confidence interval. Similarly for other
confidence levels you may choose to use.

3



Here, the width of the window — the accuracy of our estimate — shrinks
by only the square root of the ‘sample size’ (number of paths, n,). Worse, we
do not know SD(II), or its square, var(II). This is a population variance, an
unknown parameter. We have to estimate it from the data. We can do this
by using the sample variance S?(II) to approximate it. See e.g. SMF, Ch. I.

One can do better by using control variates. But we must refer for this
elsewhere, to a work on Simulation, or MATL484.

11. Analytical pricing of swaptions with LMM

There is an alternative method — an analytical approximation — to com-
pute LMM swaption prices which avoids the need for Monte-Carlo. See
[BDB| A. BRACE, T. DUN and G. BARTON, Towards a central interest-
rate model. Handbook in Mathematical Finance: Topics in Option Pricing,
Interest Rates and Risk Management, CUP, 2001 (Working Paper, 1998).

Recall the swap model SMM leading to Black’s swaption formula:

dSir(t) = o (t) Sik(t)dWir(t), Qik-

A crucial role is played by the Black swap volatility component
T T
/ on(t)’dt = / ok () dWig () .00 (£) AW (t)
0 0

— /0 (dlog Sik(t)).(d1log Sik(t)).

We computed an analogous approximate quantity in the LMM:

Siw(t) = Z w; (1) Fy(1),
where
wi(t) = wi(Fina(t), -, Fi(t))
7 HLM 1/(1+ 7Fu(t)) ‘
Z?:Z'H Tj H%:i—i—l L/(1+ 70 Fu(t))
Freezing

To reduce the dimensionality from uncountably infinite (as with functions

4



of time t) to finite (as with matrix elements), we need to approrimate. Often,
it will be useful to freeze functions of ¢ to their value at the beginning of the
relevant time-interval. For the Sy (t), freeze the ws at time 0:

Salt) = D2 wiOF ) ~ Sult) = 3 w(OF )

— variability of the ws is much smaller than variability of the F's. This gives

dSik ~ Y wi(0)dFy = (--)dt + Y w;(0)o;(£)F;(t)dZ;(t),

under any of the forward measures. So using dZ;(t)dZ;(t) = p;;dt, this gives

(@Sa O ~ 3wy (0)wel0)o, () (t)F, () Fy(t) st

G =i+1

As in V.10,

(dlog S (t))* = (dSin(t)/Si(t))?

k
D je—irr Wi(0)we(0)a; (t)oe(E) Fy(8) Fo(t) pig
~ dt.
Sin(t)?
This has the interpretation of the percentage quadratic covariation. Intro-
duce a further approximation by freezing all the F's to 0, as with the ws
above. This gives

(dlog Su(®)* ~ " wﬂ'((’)w“?f}g;w KOs (1Yot

Now take the time-average of this: we obtain

Proposition (Rebonato’s formula). The time-averaged percentage vari-
ance of S is given aproximately by

i = 7 [ ogsay

k
w;(0)we(0)F5(0) Fe(0)pi; [
Z Sire(0)? '/o o;(t)oe(t)dt.

G =i+1



Here v4MM can be used as a proxy for the Black volatility v;z(7;). So,

making this replacement, we can use Black’s swaption formula to price swap-
tions analytically with LMM, to this degree of approximation. This works
well in practice, as pointed out in e.g. [BM] and the paper [BDB].

There is an alternative, with similar accuracy in practice, due to Hull and
White (1999). They differentiate the S (t) without freezing the ws. This
gives an algebraic pricing formula, which is very quick to implement.

Instantaneous correlations: Inputs or outputs?

For swaptions, we want to match market prices (observed in the mar-
ket) to model prices (which depend on (o, p)). Should we infer p itself from
swaption market quotes, or should we estimate p exogenously and impose it,
leaving the calibration only to ¢? Are the parameters in p inputs or outputs
to the calibration?

Inputs?

We might consider a time series of past interest-rate curve data, which are
observed under the real-world (objective) probability measure. This would
allow us, through interpolation, to obtain a corresponding time series for the
particular forward LIBOR rates being modelled in our LIBOR model. These
series would be observed under the objective measure, P. Thanks to the
Girsanov theorem, this is not a problem, since instantaneous correlations are
the same under P and QQ: considered as instantaneous covariances between
driving Brownian motions in forward-rate dynamics, they do not depend on
the probability measure. So, by using historical estimation (under P), we ob-
tain a historical estimation of the instantaneous correlation matrix p. This
p, or a stylised version of it, can be considered as a given p for our LIBOR
model, and the remaining free parameters o are to be used to calibrate mar-
ket derivatives data. In this case, calibration consists of finding the os such
that the model (caps and) swaptions prices match the corresponding market
prices. In this matching procedure — often done by Optimisation (a subject
in its own right!) — p is fixed from the start as the historical estimate found
above, and we play on the volatility parameters o to achieve our matching.
Outputs?

This second possibility considers instantanecous correlations as parame-
ters to be fitted, like those in o above.

Which of these two methods is preferable? See later. For now, we try to
find a decent historical estimate of p, in case we opt for the ‘inputs’ approach.
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12. Instantaneous correlations as Inputs: The historical matrix

It turns out (see e.g. Jackel and Rebonato (2000)) that European swap-
tions are relatively insensitive to instantaneous (rather than terminal) corre-
lations. So we may impose a good exogenously-derived instantaneous corre-
lation matrix, if we have one, and then use volatilities to calibrate swaptions:
(a) Smoothing the rough historically estimated matrix through a parsimo-
nious ‘pivot’ form (below) enjoying desirable properties may guarantee a
smooth and regular behaviour of terminal correlations, and slightly more
regular ¢ when calibrating. See Rebonato and Jéckel (1999), who propose
to fit a parametric form onto the estimate.

(b) The chosen parametric forms may have particularly interesting properties
typical of forward-rate correlations.

(¢) Such pivot forms depend on a small number of parameters. It is always
desirable to work with as few parameters as possible! Incorporating personal
views, or recent changes in the market, is also easier with pivot forms.

To find our reduced-rank pivot historical-correlation matrix:

1. A market historical correlation matrix is estimated.

2. A parsimonious parametric form is chosen, and the parameters in it are
estimated from the historical estimate above.

3. An angles form of the desired rank is fitted to the resulting parsimonious
matrix (Rebonato’s angles: see the end of V.9 above).

Historical estimation

In estimating correlations, we take into account the particular nature
of LMM forward rates, characterised by a fixed maturity, in contrast to
market quotations, where a fixed time-to-maturity is usually considered as
time passes. We observe from the market, at different times t,

Pt t+2Z),Pt+1,t+1+2),---,P(t+n,t+n+2),
where Z ranges in a standard set of times-to-maturity. We need instead
P(t,T),P(t+1,T),---,P(t+n,T),

for the maturities 7" included in the tenor structure of the chosen LMM.
Accordingly, a log-interpolation between discount factors is carried out and

only one year of data is used (e.g., 1 Feb 2001 - 1 Feb 2002), since the first
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forward rate in the family expires one year after the starting date. From
these daily quotations of notional ZCBs, whose maturities range from 1y
to 20y from today, we extract daily log-returns of the annual forward rates
involved in the model. Starting from the usual Gaussian approximation,

(log(Fi(t + At)/Fi(t)), - - -, log(Fio(t + At)/ Fig(t))) ~ N(p, V'),

where the time-step At = 1d, our estimates of the parameters p (population
mean vector) and V' (population covariance matrix) are the sample mean
and sample covariance for the Gaussian variables (these are the maximum-

likelihood estimators (MLEs): SMF, IV.5):

Zlog () /F(10)),

Vij = %Z (log(Fi(tr1)/ Filtr)) — fui) Qog(Fj (ter1) / F5(Ek)) — fig),

where m is the number of observed log-returns for each rate. So our estimate
of the general correlation coefficient p;; is

pii = Vig ]\ ViV

Principal Components Analysis (PCA: SMF II1.5) reveals that, for typi-
cal data, 7 factors are required to explain 90 % of the overall variability.

Pivot matrices

We focus on an example seen earlier, (SC3) (Rebonato exponential). The
classic approach is to fit by minimising some loss function of the difference
between the two matrices — an optimisation problem.

Morini (2002) proposes instead to invert directly the functional structure
of the parametric forms. We shall show how to do this for our chosen ex-
ample below. Parameters are expressed as functions of key elements of the
target historical matrix so as to reproduce these exactly. We call such key
elements pivot points, or just pivots, of the historical matrix, and the result-
ing parametric matrices pivot matrices. The pivot approach:

(a) does not need any optimisation;
(b) with well-chosen pivots, it typically gives a matrix with the same mono-
tonicity and positivity properties as the original one;
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(c) parameters have a clear, intuitive meaning, as they are expressed in terms
of correlation entries chosen as they are considered particularly significant.
This allows us to alter the matrix easily by playing with the parameters in a
controlled way, as might be needed in market practice.
(d) It avoids the irregularities and outliers typical of historical estimates.
(e) In our examples, the fitting error with pivots is nearly optimal.

Pivots must be chosen carefully. We consider Rebonato’s exponential
form:

Pij = Poo T (1 = poo) exp{—i — j|(8 — a(max(i, j) — 1))}.
Morini (2003) shows that here, the parameters satisfy the following equations:

(le — poo> _ <pM—1,M — poo)M—l
1 — pso 1 — pso

for po; and for a, 5,

o = 1 10g< P12 — Po )
2-M PM—1,M — Poo ’

b=« —log<%>.

He also considers the Schoenmaker-Coffey model (SC3). The pivot method
applies here too. The two models are compared, for various data sets. Which
is better depends on the loss function (optimisation criterion) — and indeed,
on the data set, and the purpose for which the calibration is being done.

Cascade calibration

We mention briefly an alternative method, cascade calibration. This
method also relies on an external instantaneous correlation matrix p, that can
be estimated historically, as above. For a parametric model, such as Rebon-
ato’s exponential model above, one can fit the p-parameters to the historic
matrix, using when applicable rank reduction by eigenvalue-zeroing, or op-
timisation by Rebonato’s angles etc. Using the resulting historically-based
p-matrix, one can then use the o-parameters to fit the swaption market.
Cascade calibration is a very fast and accurate calibration procedure. For a
detailed study, with numerical examples, see [BM, 7.4, 7.6].



13. Smile: volatility modelling; Breeden-Litzenberger and Dupire
formulae

Here we follow [BM, Part IV, Ch. 9 - 12]. Also useful is Gatheral [G].

Recall (I1.3) that a caplet is like an option — indeed, it is an option, on
an interest rate rather than a stock.

Recall also (MATL480) that in the Black-Scholes theory, the volatility o
is constant. Now volatility — the unknown parameter in the Black-Scholes
formula, which has to be inferred from option prices in the market — is so
important that it has been studied intensively. It has been observed to be
by no means constant. A graph of (implied) volatility o against stock-price
S, or strike K, is not flat, but typically turns up at the sides, producing the
‘happy face’ (look at :) sideways, with the : as eyes!) of a smile. Hence the
term smile for volatility modelling, variation, dynamics etc.

The situation is similar here. Recall Black’s caplet formula (V.2):

Cpl(0, T3, Ty, K) = P(0,15)7[F5(0)®(d;) — K®(dy)],

where )
108;(F2(0)/K) + §T1?11 (T1)2

dy,dy =
b \/T11)1(T1)

We re-write this as
C’pl(O, Tl, TQ, K) = P(O, TQ)TBZ(K, FQ(O), UQ(TI)).

Suppose now that we have two different strikes K, K5, on two otherwise
similar caplets. Can one find a single volatility, v(T7) say, so that both of

Cpl(O,Tl,TQ, Kl) = P(O,TQ)TBZ(K17F2<O),U(Tl)),

C’pl(O,Tl,Tg, KQ) = P(O,TQ)TBZ(KQ,FQ(O),’U(Tl))

hold? The answer is no. What we need are two different volatilities, v(T}, K1),
v(T, K3). That is, each caplet market price requires its own Black volatility

kat(Tla K),

depending on the caplet strike K. So the market uses Black’s formula simply
as a metric to express caplet prices as volatilities.
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Volatility and its measurement

As in MATL480, volatility is both vitally important (it appears explicitly
in the key formulae — Black-Scholes, Black caplet, Slack swaption etc.), and
intangible directly. Volatility is really about market sentiment — how the
people involved in financial markets are feeling (particularly, how they re-
act to changing circumstances, especially unfavourable ones). But, we can’t
get at this directly: it is a matter of group (and individual) psychology. So
we have to rely on what we can get at directly: past price data (leading to
historic volatility), and — more relevant in times of change — present price
data (of options — on stock in MATL480, on interest rates here), leading to
implied volatility.

The overall market volatility is more important and informative than
volatility on individual products. So, there is a demand for some measure-
ment of it. This led to the CBOE introducing the VIX (volatility index).
This allows traders to follow overall market sentiment over time, rather as
in ordinary life we look at the temperature. Indeed, there is an analogy be-
tween the two: one speaks of markets over-heating, using the language of
temperature. It also allows traders to trade in options on VIX — in effect, to
bet on where market sentiment is going to go, and back their judgement with
money. It is arguable whether this is a good thing: some would say that there
are too many exotic financial derivatives, allowing traders (or speculators)
to make bets with other people’s money. One could also argue that trading
on VIX contributes to market instability. We note in passing the emergence
of XIV (a sort of “opposite to VIX”).

Be that as it may, the details of how VIX is calculated (which change over
time) are of interest in that they illustrate the ‘state of the art” on volatility
measuring.

We will not pursue this further: although interesting, these matters are
rather specialied.
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