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MATL481 INTEREST RATE THEORY: MOCK EXAM
SOLUTIONS 2017

Q1. The business cycle; the Crash; quantitative easing (QE); persistent de-
pression
The Business Cycle

The traditional view here is that when the economy was expanding –
‘boom’, with demand and activity increasing – firms would compete for
labour, wages would rise, costs would rise, prices would rise, inflation would
rise. The central bank would increase interest rates – Bank rate – to make
borrowing money more expensive. This would decrease the demand for bor-
rowing by business, and the economy would contract. By contrast, when
the economy was contracting – ‘bust’, or ‘slump’ – the Bank would reduce
interest rates, to make it cheaper for business to borrow. This would have
the effect of making business expansion cheaper; businesses would tend to
expand. The expansion would tend to overshoot the natural mean position,
leading to the next expansion and the next business cycle. [7]
The Crash; quantitative easing (QE).

Since the Crash of 2007/08 the economy has been consistently flat. In an
effort to promote growth, the authorities have held interest rates at histori-
cally low levels for long periods. In the UK, bank rate is now 0.25%, down
from 0.5%, itself unprecedentedly low. The authorities have also resorted to
unconventional monetary measures, such as quantitative easing (QE), usu-
ally described informally as creating electronic money. This has had the
desired effect of moving the economy back towards normal, from the crisis
of the Crash and its immediate aftermath. But, QE has had undesirable
and unpredicted effects. In particular, it has led to a large increase in asset
prices. This had benefited those who hold assets – principally, the already
affluent. This has widened the gap between the rich and the poor, decreas-
ing social mobility and increasing social and political tensions. In addition,
low interest rates have penalised savers. This is both unfair to them, and
undesirable nationally: we suffer from an excess of consumer indebtedness,
so saving should be encouraged. [7]
Persistent depression

The major western economies have been very slow to recover from the
Crash of 07/08. This is not unprecedented: the Japanese economy has had
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similar – and worse – experiences. After the devastation of WWII, and
American occupation, the Japanese economy experienced an ‘economic mir-
acle’, similar to that in Germany. From the late 50s to around 1990, Japan
had a dominant position in several areas of manufacturing: ship-building
(oil tankers and super-tankers), steel, cars, electronics (from transistor ra-
dios on), etc. There was then a financial crisis – perhaps a precursor of the
western Crash of 2007/08, which involved an asset-price bubble – bubbles
burst! The economy was stagnant throughout the 90s, described as Japan’s
lost decade. But things have been little better since (lost decades). [6]
[Seen – lectures]
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Q2. Prelude to Black’s caplet formula

dF (t;T1, T2) = σ2(t)F (t;T1, T2)dW2(t), IC mkt F (0;T1, T2), (LMM)

To solve the SDE (LMM) above, and compute E2[τ(F2(T1) −K)+]: by
Itô’s formula, as log′x = 1/x, log′′x = −1/x2, (dW2(t))2 = dt, (LMM) gives

d logF2(t) =
1

F2

dF2 +
1

2
(− 1

F 2
2

)dF2dF2

=
1

F2

σ2F2dW2 +
1

2
(− 1

F 2
2

(σ2F2dW2)2

= σ2(t)dW2(t)− 1

2
σ2(t)2dt :

d logF2(t) = σ2(t)dW2(t)− 1

2
σ2(t)2dt.

Integrate both sides:

logF2(T )− logF2(0) =

∫ T

0

σ2(t)dW2(t)− 1

2

∫ T

0

σ2(t)2dt :

F2(T ) = F2(0) exp{
∫ T

0

σ2(t)dW2(t)− 1

2

∫ T

0

σ2(t)2dt}.

The distribution of the random variable in the exponent is Gaussian, since
it is a stochastic integral of a deterministic function by a Brownian motion
(MATL480 Problems 5b Q1 – sums of independent Gaussians is Gaussian).
Compute its expectation: as the Itô integral has mean 0,

E[

∫ T

0

σ2(t)dW2(t)− 1

2

∫ T

0

σ2(t)2dt] = −1

2

∫ T

0

σ2(t)2dt.

The variance is

var(

∫ T

0

σ2(t)dW2(t)− 1

2

∫ T

0

σ2(t)2dt) = var(

∫ T

0

σ2(t)dW2(t))

(as the second term is deterministic)

= E[(

∫ T

0

σ2(t)dW2(t))2] (as the mean is 0)
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=

∫ T

0

σ2(t)2dt, (by Itô’s isometry: MATL480, V.5).

Summarising,

I(T ) :=

∫ T

0

σ2(t)dW2(t)− 1

2

∫ T

0

σ2(t)2dt ∼ m+ V N(0, 1)

(here ‘∼ m + V N(0, 1)’ is shorthand for ‘is distributed as m + V times a
N(0, 1) – a standard normal random variable’), where

m = −1

2

∫ T

0

σ2(t)2dt, V 2 =

∫ T

0

σ2(t)2dt.

That is,

F2(T ) = F2(0) exp{I(T )} = F2(0)em+V Z , Z ∼ N(0, 1).
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Schoenmakers-Coffey parametrisation of correlations

Schoenmakers and Coffey propose a finite sequence

1 = c1 < c2 < · · · < cM , c1/c2 < c2/c3 < · · · < cM−1/cM ,

and they set (F here stands for Full (Rank))

ρF (c)ij := ci/cj, i ≤ j, i, j = 1, · · · ,M. (SC)

So the correlation between changes in adjacent rates is

ρFi+1,i = ci/ci+1;

these are all < 1, and are increasing in i. Both these are desirable features,
in view of the above.

So: under (SC), the subdiagonal of the correlation matrix ρF (c) is in-
creasing when moving from NW to SE. Interpretation: as we move along the
yield curve, the larger the tenor, the more correlated changes in adjacent
forward rates become. This corresponds (not only to the expectation above,
but also) to the experienced fact that the forward curve tends to flatten, and
to move in a more correlated way, for large maturities than for small ones.

The number of parameters needed for a Schoenmakers-Coffey matrix is
M , rather than the 1

2
M(M − 1) parameters needed for a general correlation

matrix of the same size. One can show (we quote this) that any such SC
matrix is a genuine correlation matrix – symmetric, positive semi-definite
and with 1s on the diagonal.

Schoenmakers and Coffey also observed that this parametrisation can be
characterised alternatively in terms of

∆2, · · · ,∆M ≥ 0 :

ci = exp{
i∑

j=2

j∆j +
M∑

j=i+1

(i− 1)∆j}. (SC∆)

Full-rank, two-parameter, exponentially decreasing parametrisation
Schoenmakers and Coffey also introduced the model

ρi,j = ρ∞ + (1− ρ∞) exp{−β|i− j|}, β ≥ 0.

Here ρ∞ still represents the correlation between the ends, but only asymp-
totically (let j →∞).
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Q4. Dupire’s formula

Suppose we have an option on the forward rate F (T ), with payoff function
h and expiry T . For t ∈ [0, T ], if

v(t, x) := E[h(FT )|Ft = x],

E[h(FT )] = E[E[h(FT )|Ft = x]] (tower property)

=

∫ ∞
0

v(t, x)φ(t, x)dx,

if Ft has density φ(t, x). Now the LHS is independent of t. Hence, so too is
the RHS: differentiating under the integral sign w.r.t. t as above,

0 =

∫
∂v

∂t
φdx+

∫
v
∂φ

∂t
dx.

Now, v satisfies theKolmogorov backward equation (Fokker-Planck equation):

∂v

∂t
+

1

2
σ(t, x)2x2 ∂

2v

∂x2
= 0, v(T, x) = h(x). (FoP l)

By (FoP l), we can substitute for the ∂v/∂t term in the above, to obtain
(writing v′ for ∂v/∂x, etc.)

0 = −1

2

∫
(σ2x2φ)v′′dx+

∫
v
∂φ

∂t
dx. (∗)

Integrate the first integral by parts: the integrated term vanishes (at 0 be-
cause of the x2, at infinity because the other factors decay fast enough):∫

(σ2x2φ)v′′dx =

∫
(σ2x2φ)dv′ = −

∫
(σ2x2φ)′v′dx = −

∫
(σ2x2φ)′dv.

Integrate by parts again: again the integrated terms vanish, giving∫
(σ2x2φ)dv =

∫
v(σ2x2φ)′′dx.

Substituting this in (∗),

0 =

∫
(
1

2
(σ2x2φ− ∂φ

∂τ
)vdx.
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But the payoff h, and so the conditional density v, is arbitrary. So the
integrand here must vanish, giving the forward equation (as it deals with
forward rates),

∂φ

∂t
=

1

2

∂2

∂x2
(σ(t, x)2x2φ). (ForEq)

Suppose now that the option above is a call C with strike K. Then

C(T,K) = E[(F −K)+] = E[(F −K)I(F > K)] =

∫ ∞
K

(x−K)φ(t, x)dx.

So, first differentiating under the integral sign w.r.t. K,

∂C(T,K)/∂K = −
∫ ∞
K

φ(T, x)dx

(the (x−K) term vanishes at the lower limit). So

∂2C(T,K)/∂K2 = φ(T,K). (∗∗)

Next, differentiate w.r.t. T under the integral sign and use (ForEq):

∂C(T,K)

∂T
=

∫ ∞
K

(x−K)
∂φ(T, x)

∂T
dx

=

∫ ∞
K

(x−K).
1

2
(σ2x2φ)′′dx (by (ForEq))

= −1

2

∫ ∞
K

(σ2x2φ)′dx = −1

2

∫ ∞
K

d(σ2x2φ) (integrating by parts)

=
1

2
σ(T,K)2K2φ(T,K) (lower limit, hence the -),

performing the integration. This gives, by (∗∗):

Theorem (Dupire’s formula). In the notation above, the call price satis-
fies

C(T,K) =
1

2
σ(T,K)2K2φ(T,K).

That is, the local volatility σ(T,K) is completely specified by the volatility
surface σ(K,T ) (via its derivatives) by Dupire’s formula,

σ(T,K) =
1

K

√
2∂C(T,K)/∂T

∂2C(T,K)/∂K2
. (Dup)
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Q5. Defaultable bonds; Lando’s formula
A strictly positive stochastic process t 7→ λt, called the default intensity

or hazard rate, is given for the bond issuer or the CDS reference name. The
cumulative intensity or hazard function is the integrated process

Λ : t 7→ Λt :=

∫ t

0

λsds.

The default time τ can then be defined as the inverse of the process Λ
applied to an exponentially distributed ξ with mean 1 and independent of λ:

ξ ∼ E(1) : Q(ξ > u) = e−u, Q(ξ < u) = 1− e−u, E[ξ] = 1,

τ = Λ−1(ξ), ξ = Λ(τ) ∼ E(1), independent of λ. [3]

Now the probability of surviving for time t is

Q(τ > t) = Q(Λ−1(ξ) > t) = Q(ξ > Λ(t)) = E[I(ξ > Λ(t))]

= E[E[I(ξ > Λ(t))|Ft]] (Conditional Mean Formula)

= E[e−Λ(t)] (ξ ∼ E(1))

= E[exp{−
∫ t

0

λsds}] [3]

– the bond price if we replace r by λ! Recall that for non-defaultable bonds,

P (t, T ) = Et[
Bt

BT

1] = Et[exp(−
∫ T

t

rsds)] = Et[D(t, T )]. (P ) [1]

Theorem (Lando’s formula). The price of a defaultable bond is the price
of a default-free bond, with the risk-free short-rate r replaced by r + λ. [3]

Proof.

P (0, T ) = E[D(0, T )I(τ > T )]

= E[exp{−
∫ T

0

rsds}I(Λ−1(ξ) > T )]

= E[exp{−
∫ T

0

rsds}I(ξ > Λ(T ))]

= E[E[exp{−
∫ T

0

rsds}I(ξ > Λ(T ))|Λ, r]] (Tower property)
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= E[exp{−
∫ T

0

rsds}]E[I(ξ > Λ(T ))|Λ] (independence)

= E[exp{−
∫ T

0

rsds}] Q(ξ > Λ(T ))|Λ)

= E[exp{−
∫ T

0

rsds} exp{−Λ(T )}]

= E[exp{−
∫ T

0

rsds} exp{−
∫ T

0

λsds}]

= E[exp{−
∫ T

0

(rs + λs)ds}]. // [10]

[Seen – lectures]
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