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Breeden-Litzenberger formula

The curve
K 7→ vMkt

2 (T1, K)/
√
T1

is called the volatility smile of the T1-expiry caplet. Just as with the Black-
Scholes formula, this curve should be flat if Black’s formula were exact. But
instead, we see smile shapes, or ‘skew smiles’ – ‘smirks’.

Clearly, only some strikes K are quoted in the market, so the remaining
points have to be obtained by, say, interpolation, or by using some other
model. For fixed expiry T1, interpolation in K can easily be done, but gives
no insight into the underlying forward-rate dynamics compatible with such
prices.

Let p2 be the density of F2(T1) under the T2-forward measure (if Black’s
formula were exact, this density would be lognormal). As the caplet is an
option,

Cpl(0, T1, T2, K) = P (0, T2)τBl(K,F2(0), v2(T1))

= P (0, T2)τE
2
0 [(F (T1, T1, T2)−K)+]

= P (0, T2)τ

∫
(x−K)+p2(x)dx.

Consider now the possibility of differentiating this with respect to K. We
assume that p2 is smooth enough to justify differentiating under the integral
sign – interchanging ∂/∂K and

∫
..dx. As

(∂/∂K)[(x−K)+] = −I(K < x)

(the derivative does not exist at the point x, but as this point contributes
nothing to

∫
...dx this makes no difference), this gives

∂

∂K
Cpl(0, T1, T2, K) = P (0, T2)τ

∫
−I(K < x)p2(x)dx

= −P (0, T2)τ

∫ ∞
K

p2(x)dx.

We can now differentiate both sides to obtain:

1



Theorem (Breeden-Litzenberger formula (1978)). Under the above
smoothness condition, the density p2(K) is given by the second partial deriva-
tive of the caplet price w.r.t. the strike K:

p2(K) =
∂2

∂K2
Cpl(0, T1, T2, K)/(τP (0, T2)). (BL)

So in principle, we can use the Breeden-Litzenberger formula to pick up
the density p2 from caplet prices. But in practice, this is fraught with difficul-
ties. First, caplets are not traded in the market for all strikes K, but only for
some, {K1, · · · , Kn} say. So we have to use what we have – observed caplet
prices at these strikes – to interpolate to obtain a function approximating,
or representing, caplet prices for all K. Now interpolation is a numerical
procedure. It would probably be done in practice by use of cubic splines
(piecewise-cubic curves whose values, and those of the first two derivatives,
are continuous across the points Ki, called the knots); for background here,
see e.g. MATL484 (Sovan Mitra, Semester 1), or
[BF] N. H. BINGHAM and John M. FRY, Regression: Linear models in
statistics, Springer Undergraduate Mathematics Series (SUMS), 2010, p.212.
But however we interpolate, this has to be done numerically. We then have
to differentiate the result, again numerically. This is dangerous: differenti-
ation is an unsmoothing process: it magnifies numerical errors in the data.
Worse: we then have to differentiate again. The upshot is that, while the
Breeden-Litzenberger formula is very nice to have, it is of very limited use in
practice.

Further: when we have the density p2 (overlooking the numerical inac-
curacies inherent in it – see above): what kind of F -dynamics does it come
from?

Just as the finite-difference approximation to a derivative is a difference
quotient, the finite-difference approximation to a second derivative is of the
form

∂2

∂K2
C ∼ [C(K + ∆K)− 2C(K) + C(K −∆K)]/(∆K)2.

For this, we would need prices of C for three nearby strikes, K, K ± ∆K.
Similarly for Dupire’s formula, below.

For background here, see a book on Numerical Analysis. The relevant
subject here is the Calculus of Finite Differences (the name is in contrast to
the old name for (ordinary) calculus – Infinitesimal Calculus).
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Dupire’s formula

Theorem (Dupire’s formula). (i) Writing the density of the forward rate
Ft at time t as φ(t, x), the call price C(T,K) satisfies

∂C(T,K)/∂T =
1

2
σ(T,K)2K2φ(T,K).

(ii) The local volatility σ(T,K) is completely specified by the call-price C(., .)
(via its derivatives) by Dupire’s formula,

σ(T,K) =
1

K

√
2∂C(T,K)/∂T

∂2C(T,K)/∂K2
.

Proof. Suppose we have an option on the forward rate F (T ) (or FT for short),
with payoff function h and expiry T . For t ∈ [0, T ], if

v(t, x) := E[h(FT )|Ft = x],

E[h(FT )] = E[E[h(FT )|Ft = x]] (Conditional Mean Formula)

=

∫ ∞
0

v(t, x)φ(t, x)dx,

as Ft has density φ(t, x). Now the LHS is independent of t. Hence, so too is
the RHS: differentiating under the integral sign w.r.t. t as above,

0 =

∫
∂v

∂t
φdx+

∫
v
∂φ

∂t
dx.

Now, v satisfies theKolmogorov backward equation (Fokker-Planck equation)
(given):

∂v

∂t
+

1

2
σ(t, x)2x2

∂2v

∂x2
= 0, v(T, x) = h(x) (FoP l)

This parabolic PDE belongs to the theory of diffusion equations (more gener-
ally, Markov processes), which we touched on in MATL480, V.2.4. We quote
it here; for background, see any good book on probability and stochastic
processes (or Google ‘Fokker-Planck’).

By (FoP l), we can substitute for the ∂v/∂t term in the above, to obtain
(writing v′ for ∂v/∂x, etc.)

0 = −1

2

∫
(σ2x2φ)v′′dx+

∫
v
∂φ

∂t
dx. (∗)

3



Integrate the first integral by parts: the integrated term vanishes (at 0 be-
cause of the x2, at infinity because the other factors decay fast enough):∫

(σ2x2φ)v′′dx =

∫
(σ2x2φ)dv′ = −

∫
(σ2x2φ)′v′dx = −

∫
(σ2x2φ)′dv.

Integrate by parts again: again the integrated terms vanish, giving∫
(σ2x2φ)dv =

∫
v(σ2x2φ)′′dx.

Substituting this in (∗),

0 =

∫
(
1

2
(σ2x2φ− ∂φ

∂τ
)vdx.

But the payoff h, and so the conditional density v, is arbitrary. So the
integrand here must vanish, giving the forward equation

∂φ

∂t
=

1

2

∂2

∂x2
(σ(t, x)2x2φ). (ForEq)

Note. 1. The Kolmogorov forward and backward equations are PDEs for
the transition densities p(t, x) of diffusion equations, obtained by considering
time-intervals (t, t + dt) (looking forwards from t), (t − dt, t) (looking back-
wards from t) respectively.
2. The proof of (ForEq) above is substantially that of the Kolmogorov for-
ward and backward equations (so we have not omitted very much).
3. We do not need to worry here about the distinction between the Kol-
mogorov forward and backward equations – certainly not in one dimension.
One-dimensional diffusion equations are time-reversible.

We do, of course, have to take notice of the ‘forward’ in the forward rate
F (T ) here (cf. Ch. IV, Forward-rate models).

Suppose now that the option above is a call C with strike K. Then

C(T,K) = E[(F −K)+] = E[(F −K)I(F > K)] =

∫ ∞
K

(x−K)φ(t, x)dx.

So, first differentiating under the integral sign w.r.t. K,

∂C(T,K)/∂K = −
∫ ∞
K

φ(T, x)dx

4



(the (x−K) term vanishes at the lower limit). So

∂2C(T,K)/∂K2 = φ(T,K). (∗∗)

Next, differentiate w.r.t. T under the integral sign and use (ForEq):

∂C(T,K)

∂T
=

∫ ∞
K

(x−K)
∂φ(T, x)

∂T
dx

=

∫ ∞
K

(x−K).
1

2
(σ2x2φ)′′dx (by (ForEq))

= −1

2

∫ ∞
K

(σ2x2φ)′dx = −1

2

∫ ∞
K

d(σ2x2φ) (integrating by parts)

=
1

2
σ(T,K)2K2φ(T,K) (lower limit, hence the -),

performing the integration. This gives (i).
Then (ii) follows from (i) and (∗∗). //

Application to caplets

There is a problem in applying Dupire’s formula to the caplet market.
There, we do not have a continuum of traded maturities for options on the
forward rate F2, as we noted above. The only instant of interest in a forward
rate is typically its reset date T1, since it then becomes a LIBOR rate. And
payoffs contain LIBOR rates, not Forward-LIBOR rates. We might have
caplets on:

L(T1, T2) = F2(T1), maturity T2,
L(T2, T3) = F3(T2), maturity T3,
L(T3, T4) = F4(T3), maturity T4, etc.

But the forward rates involved are different, so we cannot assume that we
have options on several maturities T2, T3, T4, · · · for the same F , as Dupire’s
method would require. Dupire’s method does work when the asset is always
the same, as in the equity (stock) or FX (Forex, foreign-exchange) markets.

Dupire’s method is in fact non-parametric (see e.g. NHB, SMF, Ch.
VI), since it aims to derive the diffusion coefficient (the volatility here) as a
function of the whole market surface (in maturity and strike).

But we need only work in the strike dimension, since maturity is fixed for
a caplet. We can then proceed the other way round – a parametric approach:
Assume dynamics a priori, depending on given parameters.
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Price options with the right maturity and these dynamics.
These prices will depend on the parameters.
Set the parameters so as to match the relevant option prices observed in the
market for this maturity.

Start from the parametric dynamics

dF (t;T1, T2) = ν(t, F (t;T1, T2))dW (t).

This generates a smile; see below.
Here the dynamics, given by the function ν, can be either deterministic

or stochastic. In the second case, we have a stochastic volatility (SV) model;
e.g.,

ν(t, F ) =
√
ξ(t)F, dξ(t) = κ(θ − ξ(t)) + η

√
ξ(t)dZ(t), (SV )

dZdW = ρW,Zdt.

We concentrate here on a deterministic ν, giving a local volatility (LV) model,
e.g.

ν(t, F ) = σ2(t)F
γ (0 ≤ γ ≤ 1), (CEV )

with σ2 deterministic. Here CEV stands for constant elasticity of volatility.
One problem with local volatility models is that they tend to flatten the

smile in the future, conditioned on future information. For example, think
of some future time u > 0, where we consider the smile for maturity u + T
given what we know at time u. We have no reason to expect this to be any
flatter (or different in any other way) from the smile at time T given what
we know now at time 0. Now LV models do flatten the smile in this way,
while SV models do not; this is an important advantage of SV over LV.

To summarise:
1. The true forward-adjusted density p2 of F2 is linked to caplet (Call on F )
and floorlet (Put on F ) market prices through second-order differentiation
wrt strikes (Dupire’s formula).
2. We need the dF dynamics to be as compatible as possible with the density
p2.
3. Dupire’s method works on ps extracted from prices by interpolation, rather
than on prices directly, and then obtains dF based on this. But the interpo-
lation interferes strongly with the result, and the method is unstable.
4. One can instead parametrise dF and fit the prices this parametrisation
implies to the market caplet prices CplMkt(0, T1, T2, Ki) for the strikes Ki
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quoted in the market.
5. But this parametrisation has to be flexible, and has to lead to a tractable
model, in order to be useful.
6. Finally, we have to deal in general with an implied-volatility surface, since
we have a caplet-volatility curve for each expiry. The calibration issues are
as before, except for the larger computational effort as the size of the data
set increases.

Shifted lognormal (displaced diffusion) model for smile
Assume that the forward rate Fj evolves under its associated Tj-forward

measure according to the dynamics

Fj(t) = Xj(t) + α, dXj(t) = β(t)Xj(t)dW (t),

with α a real constant, β a deterministic function of time and W BM:

dFj(t) = β(t)(Fj(t)− α)dW (t)

(a shifted form of geometric Brownian motion, GBM). Then Fj(T ), condi-
tional on Fj(t), t < T ≤ Tj−1, is a shifted lognormal. We retain the analytic
tractability of GBM:

Ej
t [(Fj(Tj−1 −K)+] = Ej

t [(Xj(Tj−1 − (K − α))+],

so that for α < K the caplet price is given by Black’s formula:

Cpl(t, Tj−1, Tj, K) = τP (t, Tj)Bl
(
K − α, Fj(t)− α, (

∫ Tj−1

t

β(u)2du)
1
2

)
.

The implied Black volatility

v̂/
√
Tj−1 = v̂(K,α)/

√
Tj−1

(at t = 0, say) is obtained by ‘backing out’ the volatility parameter v̂ in
Black’s formula that matches the model price (the term ‘backing out’, and
this procedure, we have met before, in terms of implied volatility in the Black-
Scholes formula, MATL480, VI.2):

Bl(K,F, v̂(K,α) = Bl
(
K −α, Fj(t)−α, (

∫ Tj−1

t

β(u)2du)
1
2

)
, F = Fj(0).
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The role of α.
For α = 0, the implied caplet volatility is flat (constant). First, for α

non-zero, the curve is strictly decreasing (α < 0) or increasing (α > 0). Sec-
ond, it moves the curve upwards (α < 0) or downwards (α > 0):

increasing/decreasing α shifts the volatility curve K 7→ v̂(K,α) down/up.
For the best fit, one often needs decreasing implied volatility curves, which
correspond to negative α, and so to negative values in the support of the
forward-rate density (i.e., the possibility of negative values of this density).
Even though the probability of such events is small in practice, the possibility
of them is regarded as an undesirable feature.

The CEV model.

This is due to J. C. Cox (1975) and S. E. Ross (1976) (both of the Cox-
Ross-Rubinstein (binomial tree) model: MATL480, IV.5). As above,

dFj(t) = σ2(t)[Fj(t)]
γdW (t) (0 ≤ γ ≤ 1), (CEV )

Fj = 0 is an absorbing boundary when 0 < γ < 1
2

(this SDE does not have a unique solution unless we impose the boundary
condition when 0 < γ < 1

2
).

The time-dependence of σj can be dealt with by a deterministic time
change. Setting

v(τ, T ) =

∫ T

τ

σj(s)
2ds, W̃ (v(0, t)) :=

∫ t

0

σj(s)dW (s),

we obtain a BM W̃ with time-parameter v. We make this time change in the
SDE above by setting

fj(v(t)) := Fj(t) :

dfj(v) = fj(v)γdW̃ (v)

(with the boundary condition as before). This can be transformed into the
SDE for a Bessel process via a change of variables. Bessel processes (whose
theory we omit here) are among the most well-known and tractable diffu-
sions. Appealing to their theory, we quote: the transition density of Fj(T )
conditional on Fj(t), t < T ≤ Tj−1, is non-central chi-squared.
Hence an explicit formula can be given for the caplet price [BM, 10.2].
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14. Is volatility rough? Fractional Brownian motion

[GJR] Jim GATHERAL, Thibault JAISSON and Mathieu ROSENBAUM,
Volatility is rough. arXiv:1410.3394v1.

In this influential paper, the authors use fractional Brownian motion
(fBM) to model volatility; fBM is parametrised by the Hurst parameter H;
H = 1

2
gives BM; H < 1

2
gives volatility rougher than BM (and H > 1

2
gives

smoother).
Question: Is volatility rough?

The authors conclude that it is. They further conclude that the reasons
volatility is rough are mainly two-fold: order-splitting and high-frequency
trading. The influence of the second is clear. For the first: order-splitting is
the process of taking a – possibly large – order, splitting it, and executing the
resulting sub-orders separately. One motivation for this concerns the detailed
mechanism by which markets match asks (demand – buyers; as low a price
as possible) to bids (supply – sellers; as high a price as possible). The area
here is limit orders; we must refer elsewhere for this. Another motivation is
to keep trades small, so as not to shift prices against one.

The fractional BM above is the Gaussian process with mean 0 and co-
variance

CH(s, t) := E[XsXt] =
1

2
(s2H + t2H − |s− t|2H).

This is indeed a Gaussian covariance (we quote this). One can check that for
H = 1

2
this reduces to the familiar covariance min(s, t) of standard Brownian

motion.
The H here is for Hurst. Hurst was a hydrologist; the process originates in

his work on the flow of water in the River Nile. Fractional BM is widely used
to model long memory. This too is motivated by the Nile. Recall the biblical
passage, when the Israelites were enslaved in Egypt under the pharoahs in
the time of Joseph, about seven fat years followed by seven lean years. This
Joseph effect is an example of long memory.

Of course, in our subject, we have an example of long memory in the
failure of the world economy to recover from the Crash, even given a decade
and unprecedented measures – very low interest rates, QE etc. (VI.6) – de-
signed to stimulate or kick-start the economy, to get it back to its previous
(by contrast, very desirable) condition.

Fractional BM has a stochastic (Itô) calculus, reducing to the one we
know for BM when H = 1

2
.
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15. Other models

1. SABR

The SABR (pronounced ‘sabre’) model is an SV model introduced by Ha-
gan, Kumar, Lesniewski and Woodward in 2002. The acronym SABR stands
for stochastic alpha beta rho, for three of the four parameters it contains (be-
low). Under SABR, the forward rate Fj evolves under its associated measure
Qj by the dynamics

dFj(t) = V (t)[Fj(t)]
βdZj

j (t),

dV (t) = cV (t)dW j(t),

V (0) = α,

where Zj
j and Wj are Qj-standard BMs, correlated by

dZj
j (t)dWj(t) = ρdt.

The model is widely used in practice because of its simplicity and tractability
– but, it can be problematic! For details, see e.g. [BM, 11.4].

2. Flesaker-Hughston

This model, dating from 1996, was one of the first to go beyond the short-
rate framework of II. It deals with the state-price densities – pricing kernels
of I.2. It has advantages, particularly with exchange rates and in dealing
with interest-rate curves in different currencies. But it has problems. For
details, we refer to [BM, A.3].

3. Rogers

This approach, due to L. C. G. Rogers (1997), has as one of its advantages
that it gives positive interest rates. This seemed highly desirable and natu-
ral in 1997, pre-Crash; now that negative interest rates have been observed
(I.5), this seems less important. It owes its name to the Riesz decomposition
(Marcel Riesz (1886-1969) in 1937-38). This originates in pure mathematics;
in its probabilistic form, it reads: if X is a uniformly integrable (UI – “nice”:
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see e.g. NHB, Measure-Theoretic Probability, Week 3) supermartingale, it
has a unique (Riesz) decomposition into

X = Y + Z,

where Y is a UI mg and Z is a potential: that is, a non-negative UI supermg
tending to zero at infinity.

Regarding the name: potential theory has its roots in classical physics:
the potential of Newtonian (gravitational) attraction, and electromagnetic
potential; these have deep similarities, as both obey an Inverse Square Law.
So, both tend to zero at infinity; EM potential (the work done in moving a
like charge from infinity) is positive (as like charges repel). Following the dis-
covery (by Kakutani in 1944) of deep connections between potential theory
(which had by then entered pure mathematics, in particular complex analy-
sis) and Brownian motion (MATL480, V.2.4), the new field of probabilistic
potential theory emerged.

For a summary, see [BM, A.4]. One starts with a Markov process X, and
a positive function f . Recall that the state-price density ζt is the reciprocal
of the chosen numeraire, 1/ζt. One needs the resolvent Rα of X, and its
generator G (we will have to leave these terms undefined here). Rogers sets

ζt = e−αtRα(α−G)f,

and obtains the short rate as

rt = [(α−G)f(Xt)]/f(Xt)

(note that this is positive, as f is!) This approach is well suited to modelling
interest-rate curves in different currencies.

4. Brody-Hughston

[BH] D. BRODY and L. P. HUGHSTON, Chaos and coherence: a new frame-
work for interest-rate modelling. Proc. Royal Soc. A 460 (2004), 85-110.

The authors (this is the same Hughston as above! – both former col-
leagues of mine at Imperial) both have a background in physics. In partic-
ular, they use the formalism of Wiener chaos expansions. These are widely
used in quantum field theory (QFT) – Fock space, Wick expansions etc. –
and in probability and stochastic analysis – iterated Wiener (or Itô) inte-
grals. The method expands the infinite-dimensional objects we encounter in
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interest-rate theory; these expansions can be truncated, the accuracy of the
approximation reflecting the number of terms retained. We must refer to
[BH] for details.
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