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VI. CREDIT RISK

1. Introduction

As general introductions to the area of credit risk, we refer to [BM, VII,
Ch. 21 - 23], [BPT], [BMP], [B]. Also useful:
[L] David LANDO, Credit risk modelling, Princeton University Press, 2004.

As we all know, and as the events of the Crash and after daily remind
us, obligations are not always fulfilled: there is the possibility of default. We
turn now to introducing this possibility into our models.

We begin here, as we began the course, with the simplest and most basic
interest-rate product – the zero-coupon bond (ZCB). This pays 1 at time T
(maturity); its price at time t ∈ [0, T ] is P (t, T ). Now suppose that the issuer
of the bond (a company, or even a government) may default. In this case the
payoff of the ZCB at time T is:

1 with no default; 0 with default.
We write the bond price at time t now as P (t, T ). Clearly,

0 ≤ P (t.T ) ≤ P (t, T ).

When considering default, we have a random time τ at which the bond
issuer defaults (τ =∞ if there is no default – the waiting time for something
that never happens is infinite).

The value of the bond issued by the company and promising payment of
1 at time T is, as usual (MATL480 and Ch. I) the risk-neutral expectation
of the discounted payoff. We now have two relevant filtrations (information
flows):
{Ft}, the default-free filtration we have used till now (still relevant to

default-free market variables, such as the risk-free short rate rt);
{Gt}, the F -filtration augmented by information on whether or not default

has occurred by time t:

Gt := Ft ∨ σ({τ ≤ u}, 0 ≤ u ≤ t),

where, used between two σ-fields, ∨ means ‘the σ-field generated by (both
of these)’.
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With D(t, T ) the stochastic discount factor between two dates, as before
(Ch. I), we now have

P (t, T ) = E[D(t, T ) 1 |Ft],

I{τ > t}P (t, T ) = E[D(t, T )I{τ > T}|Gt].

Here, for an event A, its indicator function is

I(A) := 1 if A occurs, 0 otherwise.

So I{τ > T} is the payoff for a defaultable bond: the contract pays 1 if the
issuer (usually a company) has not defaulted, 0 if it has.

In particular, as τ > 0 (so I(τ > 0) = 1),

P (0, T ) = E[D(0, T )I{τ > T}]. (∗)

Note. 1. This ignores issues involving recovery. Usually, a company will only
default if it is going bankrupt. Then – as its liabilities exceed its assets – the
company dies, and its assets are distributed to the creditors by the receivers
or liquidators. We will not go into this in detail, as bankruptcy laws vary
with country and over time.
2. To be specific: under US law, what a company usually does is to file
under Chapter 11 for protection from creditors. Homework: explore this on
the Internet.
3. We have met enlargement of filtrations before, in MATL480, in the context
of insider trading, and its detection. The analogy between financial crime
there, and default here, is interesting. But there, the focus is on detection;
here, it is on prediction or prevention if possible – and coping with it if not.

Taking recovery into account: the discounted payoff becomes

D(t, T )I{τ > T}+REC D(t, τ)I{τ ≤ T}

if any such recovery is made at the time τ of default, and

[D(t, T )I{τ > T}+REC D(t, T )I{τ ≤ T}

if it is made instead at the time T of maturity. Taking E[.|Gt] in each case
gives the price of the bond.
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Financial forensics

When a major default occurs, it is necessary to find out why. This is just
as necessary for the health of the financial world as finding out who did it and
why after a major crime – and for the same reasons. The leading exponent
of financial forensics was Steve (Professor Stephen A.) Ross (1944-2017) (of
the Cox-Ingersoll-Ross model and the Cox-Ross-Rubinstein binomial tree),
who also pioneered the arbitrage pricing technique (APT) in the 1970s. He
was an excellent speaker, and writer, on this important area.

Bankruptcy
Recall that bankruptcy is basically a mechanism for writing off unrecov-

erable debt. As companies do fail (‘die’), this is necessary. But, the interests
of the creditors must be protected by law (in different ways in different coun-
tries, as above). Bankruptcy law is an important legal specialism.

Disclosure
Recall that investors buy company stock for two reasons: dividends, and

capital appreciation. Dividends are paid out of company profits. When the
board of a company foresees a disappointing profit (at the end of the finan-
cial year, say), it may choose to issue a profits warning. This – the unforced
revelation of bad news – has the unwelcome effect of diminishing the at-
tractiveness of company shares, and may depress the share price. But, the
managed release of bad news in good time may be ‘the lesser of two evils’,
compared to the shock of sudden revelation later. Disclosure is an important
subject in its own right.

2. Credit default swaps (CDS)

Credit default swaps (CDSs) are basic protection contracts that became
quite liquid on a large number of products after their introduction in 1991-94.
CDSs reached a notional value of $ 3.7t (trillion) in 2003, $ 62.2t in 2007, $
38.6t in 2008, $ 25t in 2012 (ISDA figures – International Swaps and Deriva-
tives Association). They are now actively traded, and are a basic product in
the area of credit derivatives, analogous to IRSs and FRAs (II.2) being basic
products in the world of interest-rate derivatives.

We do not need a model to value CDSs; rather, we need a model that can
be calibrated to CDSs – that is, to take CDSs as model inputs (rather than
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outputs), in order to price more complex derivatives.
Regarding options: single-name CDS options have never been liquid.

What is liquid is CDS index options – options on an index (Footsie, S&P,
Dax etc.) – giving protection against an index (which reflects the state of
a national economy) rather than an individual company. As above, we may
expect to have to incorporate CDS index options into our model, rather than
price them, as with CDSs themselves.

A CDS contract gives protection against default. Two companies, A
(protection buyer) and B (protection seller) agree on the following. If a third
company C (reference credit) defaults at time τ , with

Ta < τ < Tb,

B pays A a certain deterministic cash amount LGD, the loss given default. In
return, A pays to B a rate R (‘R for rate’; cf. ‘r for risk-free rate, MATL480)
at times Ta+1, · · · , Tb or until default – at time τC (infinite if C does not
default). Set T0 = 0,

αi := Ti − Ti−1.

Typically, LGD is the notional, 1, or notional-minus-recovery, 1−REC. This
just says that money is either lost or recovered – true to a first approximation
(but neglects such things as the costs of the administrators and liquidators
who must take over the company’s assets and see that the creditors are re-
paid as much as possible).

A typical stylised case occurs when A has bought a corporate bond issued
by C, and is waiting for the coupons (if any) and final notional payment from
C. If C defaults before the corporate bond maturity, A does not receive such
payments. To guard against this, A goes to B and buys some protection
against this risk, asking B for a payment (in case of default) that roughly
amounts to the loss on the bond (e.g. notional minus deterministic recovery)
that A would face in case C defaults. Again, A may hold a portfolio of several
instruments with a large exposure to counterparty C. To partly hedge such
exposure, A enters into a CDS, by buying protection from a bank B against
default by C.

What counts as a credit event triggering τC? Possibilities include:
(a) bankruptcy of C;
(b) failure of C to pay (or pay on time)1;

1Sharp practice exists in the business world regarding paying on time. Of course one
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(c) obligation acceleration, when C is required to pay ahead of schedule be-
cause of C’s failure to meet the terms of the loan;
(d) restructuring, when C undergoes reorganisation to consolidate its debt.
There are several types of restructuring (e.g., ‘reverse of a merger’); defini-
tions and legislation vary, e.g. between Europe and the USA.

What happens in a CDS contract at default of C?
(a) Cash settlement.

The protection seller pays to the buyer the loss value of the referenced
instruments (e.g. bonds issued by C), following the credit event. The bonds
or loans themselves are not transferred. When more instruments can be ref-
erenced the cheapest-to-deliver price variation is used (see below).
(b) Physical settlement.

The protection buyer receives a cash payment, typically the insured face
value, from the seller, and the seller takes possession of the defaulted loan in-
strument or bonds for an equivalent notional amount. Here most CDSs allow
the protection buyer to choose deliverables from a pool of defaulted bonds
with equal seniority (in tranches: senior gets paid first, then mezanine, then
junior). The cheapest-to-deliver bond is typically chosen (different value in
a reorganisation, higher accrued interest, ...).
Physical settlement: Auction.

If there are not enough bonds to match the insured face value, a credit-
event auction occurs, and the payment received is usually substantially less
than the face value of the loan.

Recovery rate, REC.
The recovery rate REC is implicitly defined by these procedures and by

market-value decline after a credit event, and is very hard to estimate before
the event.

Before the Crash in 2007, REC = 40 % was a typical figure, and REC
= 50 % for financials. But, Lehman REC in immediate auction was 8.625

should do this, morally and to fulfil one’s legal obligations, and for the sake of one’s
business reputation, which is a valuable asset and hard to replace. But, big companies
have leverage over small companies, because of the asymmetry of the relationship: an order
from a big company is harder for the small company to replace. This can be exploited by
an unscrupulous company. For example, in the construction industry, contractors employ
sub-contractors; the practice of deliberately paying them late is called “subby-bashing”.
But, this practice can be dangerous. The collapse of Carillion (15.1.2018) was foreseen,
and exploited, by hedge funds, because it started to pay its sub-contractors late.
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%! Lehman asset liquidations are still ongoing.2 Recovery has led to legal
battles. The final recovery might exceed 40 %.

ISDA in 2009 recommends REC 20 % or 40 %.
Analysis is mostly possible in aggregate on large pools of bonds or loans

with similar ratings (one can estimate more precisely for a large sample than
for an individual case).

There are only a few studies available. In aggregate, there is an inverse
relationship between recovery rates REC and credit risk/spread or default
rates – as one would expect. One can postulate such an inverse relationship
between spreads and recoveries, but there is no consensus on how to make
this precise.

We may write the running CDS discounted payoff to B at time t < Ta as
(with Tβ(τ) the first of the Tis following τ)

ΠRCDS(t) := RD(t, τ)(τ − Tβ(τ)−1)I(Ta < τ < Tb)

+R
b∑

i=a+1

D(t, Ti)αi I(τ > Ti)

−LGDI(Ta < τ ≤ Tb)D(t, τ).

Here, the three terms in the payout on the right correspond to:
1. Discounted accrued rate at default. This is supposed to compensate the
protection seller for the protection he provided from the last Ti before default
to default at τ .
2. CDS rate premium payments if there is no default. This is the premium
received by the protection seller for the protection being provided.
3. Payment of protection at default if this happens before the final Tb.
These are random discounted cash flows, not yet the CDS price.

To find the price, we take the risk-neutral expectation, as usual:

CDSa,b(t, R, LGD) := E[ΠRCDS(t)].

This pricing formula depends on the assumptions on interest-rate dynamics
(as in previous chapters), and assumptions on the default time τ . These are
of various kinds: reduced-form models, structural models, etc. (see below).

As usual, we will not use the resulting formulas to price CDSs already

2Over 350 firms participated in the auction following the collapse of Lehman.
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quoted in the market. Rather, we will invert these formulas for the cor-
responding CDS market quotes to calibrate our models to the CDS quotes
themselves. We will see examples later.

Model-independent formulas
We will assume that the default times τ are independent of the stochastic

discount factors D(s, t). This is reasonable:
(a) the default is at company level (micro-economic), while the discount fac-
tors are at national or international level (macro-economic);
(b) we cannot proceed without such an assumption.

Nevertheless, full independence may well not hold. Major events at world
level (the Crash; wars; major political events – Brexit, Trump, ...; major ter-
rorist attacks; oil crises; natural disasters (tsunamis, earthquakes, hurricanes,
...) affect both.

The price of the premium leg of the CDS is

PremiumLega,b(R) = E[D(0, τ)(τ − Tβ(τ)−1) R I(Ta < τ < Tb)

+
b∑

i=a+1

D(0, Ti)αi R I(τ > Ti)]

= E[

∫ ∞
0

D(0, t)(τ−Tβ(τ)−1)R I(τ ∈ [t, t+dt])+R
b∑

i=a+1

D(0, Ti)αiE[I(τ ≥ Ti)]

= E[

∫ Tb

Ta

D(0, t)(τ−Tβ(τ)−1) R I(τ ∈ [t, t+dt]]+R
b∑

i=a+1

P (0, Ti)αiQ(τ ≥ Ti)

(by independence: E[XY ] = E[X].E[Y ] with X, Y independent)

= R

∫ Tb

Ta

E[D(0, t)(τ−Tβ(τ)−1)]E[I(τ ∈ [t, t+dt])]+R
b∑

i=a+1

P (0, Ti)αiQ(τ ≥ Ti)

= R

∫ Tb

Ta

P (0, t)(τ − Tβ(τ)−1)Q(τ ∈ [t, t+ dt]) +R
b∑

i=a+1

P (0, Ti)αiQ(τ ≥ Ti),

using independence again.
We can reduce to the R = 1 case:

PremiumLega,b(R;P (0, .),Q(τ > .) = R PremiumLeg1a,b(P (0, .),Q(τ > .)),
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where

PremiumLeg1a,b(P (0, .),Q(τ > .)) :=

∫ Tb

Ta

P (0, t)(τ − Tβ(τ)−1)dtQ(τ ≤ t)

+
b∑

i=a+1

P (0, Ti)αiQ(τ ≥ Ti).

This model-independent formula uses the initial market ZCB curve (bonds)
at time 0 (i.e. P (0, .)) and the survival probabilities Q(τ ≥ .) at time 0.

A similar formula holds for the protection leg, again under independence
between default τ and interest rates:

ProtectLeg1a,b(P (0, .),Q(τ > .)) =

∫ Tb

Ta

P (0, t)dtQ(τ ≤ t).

This too is model-independent.
So one obtains CDS prices:

CDSa,b(t, R, LGD;Q(τ ≤ .)) = −LGD[

∫ Tb

Ta

P (0, t)dtQ(τ ≤ t)]

+R[

∫ Tb

Ta

P (0, t)(τ − Tβ(τ)−1)Q(τ ∈ [t, t+ dt])

+
b∑

i=a+1

P (0, Ti)αiQ(τ ≥ Ti)].

The integrals here in the survival probabilities are Stieltjes integrals, and can
be approximated numerically by Riemann-Stieltjes sums, by using a small
enough discretisation time-step.

CDS stripping
The market quotes, at time 0, the fair R = RmktMID

0,b (0) coming from bid
and ask quotes for this fair R (MID: average the bid and ask quotes). This
fair R equates the two legs for a set of CDSs with initial protection time
Ta = 0 and final protection time

Tb ∈ {1y, 2y, 3y, 4y, 5y, 6y, 7y, 8y, 9y, 10y},

although often only a subset of these maturities ({1, 3, 5, 7, 10} say) is avail-
able.
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So to find this ‘fair R’ (cf. FRSa, CH. II): solve

CDS0,b(t, R
mktMID
0,b (0), LGD;Q(τ > .)) = 0

for the relevant cases of Q(τ > .):
(i) starting from Tb = 1y, and finding the market-implied survival

{Q(τ ≥ t), t ≤ 1y};

(ii) plugging this into the Tb = 2y CDS legs formula, and then solving the
same equation with Tb = 2y, we find the market-implied survival

{Q(τ ≥ t), t ∈ (1y, 2y]},

and so on up to Tb = 10y.
This method is called CDS stripping. This is a way to strip survival (or

equivalently, default) probabilities from CDS quotes in a model-independent
way. There is no need to assume an intensity or a structural model for de-
fault here.

However, the market in doing the above stripping typically resorts to
intensities (also called hazard rates), assuming existence of intensities asso-
ciated with the default time. We turn to intensity models next.

3. Intensity models; stochastic intensity; Cox processes; Lando’s
formula

Recall the work on hazard rates in MATL480 Ch. VII, in the context of
survival analysis in life insurance.

In intensity models, the random default time τ is assumed to be expo-
nentially distributed.

Stochastic intensity
The deterministic intensity or hazard rates above account for credit-

spread structure. But they do not account for volatility. To do this, we
need to move to stochastic intensity – a Cox process. The deterministic

t 7→ γ(t), Γ(t) =

∫ t

0

γ(u)du

now becomes the stochastic

t 7→ λ(t) = λt, Λ(t) =

∫ t

0

λ(u)du.
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A strictly positive stochastic process

t 7→ λt,

called the default intensity or hazard rate, is given for the bond issuer or the
CDS reference name.

The cumulative intensity or hazard function is the integrated process

Λ : t 7→ Λt :=

∫ t

0

λsds.

The default time τ can then be defined as the inverse of the process Λ
applied to an exponentially distributed random variable ξ with mean 1 and
independent of λ: thus

ξ ∼ E(1) : Q(ξ > u) = e−u, Q(ξ < u) = 1− e−u, E[ξ] = 1,

τ = Λ−1(ξ), ξ = Λ(τ) ∼ E(1), independent of λ,Λ,Λ−1.

Now the probability of surviving for time t is

Q(τ > t) = Q(Λ−1(ξ) > t)

= Q(ξ > Λ(t))

= E[I(ξ > Λ(t))]

= E[E[I(ξ > Λ(t))|Ft]] (Conditional Mean Formula)

= E[e−Λ(t)] (ξ ∼ E(1))

= E[exp{−
∫ t

0

λsds}].

This looks exactly like a bond price if we replace r by λ!
We can see this coming!:

The reason we obtain the bond-price formula is because (compound) interest
is exponential, by its very nature (see e.g. MATL480, I.1).
The reason we obtain the above survival-probability formula is because de-
faults are exponentially distributed (MATL480, Ch. VII).

We are now ready to price a defaultable ZCB, P (0, T ) (with zero recovery,
for simplicity). Recall (II.1) that in the non-defaultable case,

P (t, T ) = Et[
Bt

BT

1] = Et[exp(−
∫ T

t

rsds)] = Et[D(t, T )]. (P )

10



The result below is due to Lando in 1994 (thesis); see also
[Lan1] D. LANDO, Modelling bonds and derivatives with default risk, Math-
ematics of derivative securities (ed. M. A. H. Dempster & S. R. Pliska) 369-
393, CUP, 1997,
[Lan2] D. LANDO, On Cox processes and credit-risky securities. Review of
Derivates Research 2 (1998), 99-120.

Theorem (Lando’s formula). The price of a defaultable bond with de-
fault intensity λ is just the price of a default-free bond, where the risk-free
short-rate r is replaced by r + λ.

Proof.

P (0, T ) = E[D(0, T )I(τ > T )] (by (∗), VI.1 p.2)

= E[exp{−
∫ T

0

rsds}I(Λ−1(ξ) > T )] (def. of D; τ = Λ−1(ξ))

= E[exp{−
∫ T

0

rsds}I(ξ > Λ(T ))] (apply Λ inside I(.))

= E[E[exp{−
∫ T

0

rsds}I(ξ > Λ(T ))|Λ, r]] (Conditional Mean Formula)

= E[exp{−
∫ T

0

rsds}]E[I(ξ > Λ(T ))|Λ] (independence)

= E[exp{−
∫ T

0

rsds}] Q(ξ > Λ(T ))|Λ) (E[IA] = Prob(A))

= E[exp{−
∫ T

0

rsds} exp{−Λ(T )}] (ξ ∼ E(1))

= E[exp{−
∫ T

0

rsds} exp{−
∫ T

0

λsds}] (defn. of Λ)

= E[exp{−
∫ T

0

(rs + λs)ds}]. //

Note.
1. The independence assumption in Lando’s formula is its weak point, and
is open to question. When the economy is in trouble, both interest rates
(including the spot rate r) and default intensities λ are affected. They will
thus not be independent, as they both respond to the same macro-economic
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situation. For a more exact result, we would need the joint distribution of
(e−rt , e−λt). This would be difficult to model, and Lando’s formula works
well in practice, so it is widely used.
2. Cox processes (D. R. Cox (1924-) in 1955) were first introduced by Cox
in statistical studies of fibre strength in the textile industry. They were used
by Lando (1994, 1998) above, for the pricing of defaultable bonds. They
are also widely used in the modelling of geophysical events such as volcano
eruptions, earthquakes, tsunamis etc. See e.g.
[DVJ] D. J. DALEY and D. VERE-JONES, An introduction to the theory
of point processes. Vol. I, Elementary theory and methods; Vol. II, General
theory and structure. Wiley, 2003 (2nd ed.; 1st ed., one volume, 1998).
3. The use of martingale methods for point processes (Poisson processes, Cox
processes etc.) is Poisson-based. Although it is easier than the martingale
theory of processes based on Brownian motion (MATL480), it came later.
For background, see
[Bre] Pierre BRÉMAUD, Point processes and queues: Martingale dynamics.
Springer, 1981.
Just as Brownian-based stochastic integration and martingales rest on (we
give both notations)

(dBt)
2 = dt : (dW (t))2 = dt

(Lévy’s theorem on quadratic variation of Brownian motion), its Poissonian
analogue is based on

(dNt)
2 = dNt.

Here Nt (‘N for number’) counts e.g. renewals up to time t, or insurance
claims, etc. (MATL480, VII). This just says that dNt is 0 or 1: the count
goes up by 1 when an event occurs.
4. Both the Wiener and the Poisson processes belong to the wider class
of Lévy processes – processes with stationary independent increments. A
stochastic calculus exists for them too, including the Wiener and Poisson
cases above. See
D. Applebaum, Lévy processes and stochastic calculus, 2nd ed., CUP, 2009
(1st ed. 2004).
Stochastic calculus was developed for the much more general semimartingales
(local martingale + finite variation) in the 1960s and 70s by P.-A. Meyer,
but this is harder.
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