
MATL481 INTEREST RATE THEORY: RESIT EXAM
SOLUTIONS 2017-18

Six questions; do four; twenty-five marks per question

Q1. CDOs; toxic debt; securitisation; negative interest rates
(i) Collateralised debt obligations (CDOs)

A CDO is a structured financial product that pools together cash-flow-
generating assets (mortgages, bonds, loans etc.), and repackages this asset
pool into discrete tranches, that can be sold to investors. The senior tranches
have priority – get repaid first – in case of default; they thus have higher credit
ratings, but offer lower coupon rates. Conversely, the junior tranches have
lower credit ratings, but offer higher coupon rates to compensate for this.

CDOs split, into mortgage-backed securities (MBS), and asset-backed se-
curities (ABS). [6]
(ii) Toxic debt

Many of the CDOs that banks owned were based on assets in the sub-
prime mortgage area. When the sub-prime bubble burst, the value of such
CDOs burst with it – with devastating consequences: the Crash. It emerged
that the boards of the big banks did not understand the dangers they had
been running. They did not know what their CDOs and other such assets
were worth. It was a great shock to banks to realise that they had no idea
what their assets were worth. Worse: they realised that other banks were
in the same situation. The result was a sudden collapse in the confidence
of banks in both themselves and other banks. So banks abruptly stopped
lending – even to each other. When the inter-bank lending that provides
the lubrication that keeps the wheels of finance turning was withdrawn, the
wheels stopped turning and the economy seized up. [6]
(iii) Securitization

Securitization is the name given to the search in recent decades for new
opportunities for profit, based on identifying risks that people or firms will
want protection from (or insurance against). Of course, taking risks is risky:
it could go wrong. But, ‘nothing venture, nothing win’: businesses know
that they cannot make profits without engaging in market activity, and this
is risky. Business (at least in some sectors – investment banking, for exam-
ple) has an appetite for risk, for this reason. As a result, there are now all
kinds of (fairly) new derivatives: weather derivatives; catastrophe derivatives
(‘cat bonds’); volatility derivatives (VIX index), etc.
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Recall the role of catastrophes such as major US hurricanes, the wave of
asbestos claims etc. in the Lloyds of London insurance scandal of the 1990s,
and what it revealed about the lack of proper oversight (within Lloyds), and
regulation (outside it). [6]
(iv) Negative interest rates

Interest rates have always been regarded as naturally positive, as they
compensate the lender for the two disadvantages of lending money: the risk
of default, and the loss (for the loan period) of the use of one’s own money.
Negative interest rates would have been regarded as ridiculous before the
Crash. But, at individual level, banks provide a service in looking after cus-
tomers’ money: protection against theft (or robbery, as was once common),
accidental loss etc., and this service could in principle be charged for.

After the Crash, at government/central bank level, interest rates have
been held at historically very low rates (fractions of a percent) for extended
periods (a decade now). Negative interest rates have indeed been seen, in
several major countries. Central banks are thus charging banks for the ser-
vice of looking after their money, and are encouraging them to lend funds
(often publicly provided), to stimulate the economy, rather than hoard them
(to shore up their capital reserves), by directly penalising them if they do
not do so. [7]
[Mainly seen – lectures]
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Q2. Bond prices; spot rates; forward rates

Bond prices. The simplest case is that of zero-coupon bonds, or ZCBs (coupons
being payments made to bond-holders analogous to dividends being payments
made to stock-holders). The price at time t ∈ [0, T ] of a bond paying 1 (unit
of currency) at time T (the maturity) is P (t, T ).

Given what we know ‘now’, at current time t, bond prices are non-random:
ZCBs are highly liquid; we can see them being traded (at various maturities
T ); so we know what they are worth: we know the P (t, T ). [7]
Spot rates. Here the (constant, non-random, risk-free) interest rate r of
Black-Scholes theory is replaced by a stochastic process r = (rt). They are
the instantaneous rates implied by the bond prices P (t, T ) above: with Ft
the information available at time t

P (t, T ) = Et[exp{−
∫ T

t

rsds}],

with Et[.] = EQ[.|Ft] and Q the risk-neutral measure.
Spot rates are simple conceptually (as they extend the familiar Black-

Scholes case so visibly), but they are difficult to measure, as they are rates;
rates, being instantaneous, are harder to measure than quantities depending
on an interval of time, such as LIBOR.

Examples: Vasicek model; Cox-Ingersoll-Ross model (CIR); two-factor
Vasicek; two-factor CIR. [9]
Forward rates. These are the interest rates f(t, T ) implied over the time-
interval [t, T ] by the bond prices P (t, T ) above; thus

P (t, T ) = exp{−
∫ T

t

f(t, s)ds}.

Again, being a rate, forward rates cannot be measured directly.
Example: the Heath-Jarrow-Morton (HJM) model, with SDE

df(t, T ) = α(t, T )dt+ σ(t, T )dWt, (HJM)

with α(t, T ) the drift, σ(t, T ) the volatility and (Wt) Brownian motion.
To avoid arbitrage, the drift α here must be a function of the volatility

σ. This is the Heath-Jarrow-Morton drift condition. [9]
[Seen, lectures]
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Q3. Rho.
(i) Rho for calls.

With φ(x) := e−
1
2
x2/
√

2π, Φ(x) :=
∫ x
−∞ φ(u)du, τ := T − t the time to

expiry, the Black-Scholes call price is, with d1, d2 as given,

Ct := StΦ(d1)−Ke−r(T−t)Φ(d2). (BS)

So as d2 = d1 − σ
√
τ ,

φ(d2) =
e−

1
2
(d1−σ

√
τ)2

√
2π

=
e−

1
2
d21

√
2π

.ed1σ
√
τ .e−

1
2
σ2τ = φ(d1).e

d1σ
√
τ .e−

1
2
σ2τ .

Exponentiating the definition of d1,

ed1σ
√
τ = (S/K).erτ .e

1
2
σ2τ .

Combining,

φ(d2) = φ(d1).(S/K).erτ : Ke−rτφ(d2) = Sφ(d1). (∗) [4]

(ii) Differentiating (BS) partially w.r.t. r gives, by (∗),

ρ := ∂C/∂r = Sφ(d1)∂d1/∂r −Ke−rτφ(d2)∂d2/∂r +Kτe−rτΦ(d2)

= Sφ(d1)∂(d1 − d2)/∂r +Kτe−rτΦ(d2)

= Sφ(d1)∂(σ
√
τ)/∂r +Kτe−rτΦ(d2) = Kτe−rτΦ(d2) :

ρ > 0. [4]

(iii) Financial interpretation.
As r increases, cash becomes more attractive compared to stock. So stock

buyers have a ‘buyer’s market’, favouring them. So for calls (options to buy),
ρ > 0. [4]
(iv) Rho for puts.

By put-call parity, S + P − C = Ke−rτ :

∂P/∂r = ∂C/∂r −Kτe−rτ = −Kτe−rτ [1− Φ(d2)] = −Kτe−rτΦ(−d2) < 0.
[4]

(v) Financial interpretation.
As above: as r increases, stock sellers also operate in a buyer’s market,

but this is against them. So for puts (options to sell), ρ < 0. [4]
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(vi) American options.
All this extends to American options,via the Snell envelope, which is

order-preserving. The discounted value of an American option is the Snell
envelope Ũn−1 = max(Z̃n−1, E

∗[Ũn|Fn−1]) of the discounted payoff Z̃n (exer-
cised early at time n < N), with terminal condition UN = ZN , ŨN = Z̃N .
As r increases, the Z-terms increase for calls (rho is positive for European
calls). As the Zs increase, the Us increase (above: backward induction on
n – dynamic programming, as usual for American options). Combining: as
r increases, the U -terms increase. So rho is also positive for American calls.
Similarly, rho is negative for American puts. [5]
[Similar to ‘vega positive’, done in Problems]
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Q4. LIBOR Market Model (LMM)

dF (t;T1, T2) = σ2(t)F (t;T1, T2)dW2(t), IC mkt F (0;T1, T2), (LMM)

To solve the SDE (LMM) above, and compute E2[τ(F2(T1) −K)+]: by
Itô’s formula, as log′x = 1/x, log′′x = −1/x2, (dW2(t))

2 = dt, (LMM) gives

d logF2(t) =
1

F2

dF2 +
1

2
(− 1

F 2
2

)dF2dF2

=
1

F2

σ2F2dW2 +
1

2
(− 1

F 2
2

(σ2F2dW2)
2

= σ2(t)dW2(t)−
1

2
σ2(t)

2dt :

d logF2(t) = σ2(t)dW2(t)−
1

2
σ2(t)

2dt.

Integrate both sides:

logF2(T )− logF2(0) =

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2(t)
2dt :

F2(T ) = F2(0) exp{
∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2(t)
2dt}. [8]

The distribution of the random variable in the exponent is Gaussian, since
it is a stochastic integral of a deterministic function by a Brownian motion
(recall: sums of independent Gaussians are Gaussian; limits of Gaussians are
Gaussian). [4]

Compute its expectation: as the Itô integral has mean 0,

E[

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2(t)
2dt] = −1

2

∫ T

0

σ2(t)
2dt. [4]

The variance is

var(

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2(t)
2dt) = var(

∫ T

0

σ2(t)dW2(t))

(as the second term is deterministic)

= E[(

∫ T

0

σ2(t)dW2(t))
2] (as the mean is 0)

6



=

∫ T

0

σ2(t)
2dt, (by Itô’s isometry: MATL480, V.5). [5]

Summarising,

I(T ) :=

∫ T

0

σ2(t)dW2(t)−
1

2

∫ T

0

σ2(t)
2dt ∼ m+ V N(0, 1)

(here ‘∼ m + V N(0, 1)’ is shorthand for ‘is distributed as m + V times a
N(0, 1) – a standard normal random variable’), where

m = −1

2

∫ T

0

σ2(t)
2dt, V 2 =

∫ T

0

σ2(t)
2dt.

That is,

F2(T ) = F2(0) exp{I(T )} = F2(0)em+V Z , Z ∼ N(0, 1). [4]

[Seen – lectures]
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Q5. Ornstein-Uhlenbeck (OU)/Vasicek (Vas) process.
(i) The OU SDE dV = −κV dt+σdW (OU) models the velocity of a diffusing
particle. The −κV dt term is frictional drag, and κ is the inverse relaxation
time; the σdW term is noise, and σ is the volatility. [2]
(ii) e−κt solves the corresponding homogeneous DE dV = −κV dt. So by
variation of parameters, take a trial solution V = Ce−κt. Then

dV = −κCe−κtdt+ e−κtdC = −κV dt+ e−κtdC,

so V is a solution of (OU) if e−κtdC = σdW , dC = σeκtdW , C = c +
σ
∫ t
0
eκudW . So with initial velocity v0, V = e−κtC is

V = v0e
−κt + σe−κt

∫ t

0

eκudWu. [4]

(iii) V comes from W , Gaussian, by linear operations, so is Gaussian.
Vt has mean v0e

−κt, as E[eκudWu] =
∫ t
0
eκuE[dWu] = 0.

By the Itô isometry, Vt has variance

E[(σe−κt
∫ t

0

eκudWu)
2] = σ2e−2κt

∫ t

0

(eκu)2du

= σ2e−2κt[e2κt − 1]/(2κ) = σ2[1− e−2κt]/(2κ).

So Vt has distribution N(v0e
−κt, σ2(1− e−2κt)/(2κ)). [4]

(iv) For u ≥ 0, the covariance is cov(Vt, Vt+u), which is

σ2E[e−κt
∫ t

0

eκvdWv.e
−κ(t+u)(

∫ t

0

+

∫ t+u

t

)eκwdWw].

By independence of Brownian increments,
∫ t+u
t

contributes 0, so by above

cov(Vt, Vt+u) = e−κuvar(Vt) = σ2e−κu[1−e−2κt]/(2κ)→ σ2e−κu/(2κ) (t→∞).
[4]

(v) V is Markov (a diffusion), being the solution of the SDE (OU). The limit
distribution as t→∞ is N(0, σ2/(2κ)) (the Maxwell-Boltzmann distribution
of Statistical Mechanics). As only the time-difference u survives the passage
to the limit t → ∞, the limit process is stationary; it is also Gaussian, and
Markov, by above. [3]
(vi) The process shows mean reversion – a strong push towards the central
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value. This is characteristic of interest rates (under normal conditions – post-
Crash, interest rates have been stuck at just above zero – unprecedented).
The financial relevance is to the Vasicek model of interest-rate theory. [4]
(vii) The Vasicek model is widely used because it is analytically tractable,
and easy to interpret. Its main drawbacks both stem from its Gaussianity
(as do its main advantages!):
(a) negative interest rates;
(b) poor fit to market data: tails too thin, symmetric rather than skew, etc.
In addition:
(c) One-factor models are not capable of capturing all relevant aspects; one
needs at least a two- (or three-) factor model, and the Vasicek model does
indeed extend easily to higher factors. [4]
[Seen, lectures.]
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Q6. Dupire’s formula
Theorem (Dupire’s formula). (i) Writing the density of the forward rate
Ft at time t as φ(t, x), the call price C(T,K) satisfies

∂C(T,K)/∂T =
1

2
σ(T,K)2K2φ(T,K).

(ii) The local volatility σ(T,K) is completely specified by the call-price C(., .)
(via its derivatives) by Dupire’s formula,

σ(T,K) =
1

K

√
2∂C(T,K)/∂T

∂2C(T,K)/∂K2
.

Proof. Suppose we have an option on the forward rate F (T ) (or FT for short),
with payoff function h and expiry T . For t ∈ [0, T ], if

v(t, x) := E[h(FT )|Ft = x],

E[h(FT )] = E[E[h(FT )|Ft = x]] (tower property)

=

∫ ∞
0

v(t, x)φ(t, x)dx,

as Ft has density φ(t, x). Now the LHS is independent of t. Hence, so too is
the RHS: differentiating under the integral sign w.r.t. t as above,

0 =

∫
∂v

∂t
φdx+

∫
v
∂φ

∂t
dx. [4]

Now, v satisfies theKolmogorov backward equation (Fokker-Planck equation):

∂v

∂t
+

1

2
σ(t, x)2x2

∂2v

∂x2
= 0, v(T, x) = h(x) (FoP l)

(given). By (FoP l), we can substitute for the ∂v/∂t term in the above, to
obtain (writing v′ for ∂v/∂x, etc.)

0 = −1

2

∫
(σ2x2φ)v′′dx+

∫
v
∂φ

∂t
dx. (∗) [4]

Integrate the first integral by parts: the integrated term vanishes (at 0 be-
cause of the x2, at infinity because the other factors decay fast enough):∫

(σ2x2φ)v′′dx =

∫
(σ2x2φ)dv′ = −

∫
(σ2x2φ)′v′dx = −

∫
(σ2x2φ)′dv.
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Integrate by parts again: again the integrated terms vanish, giving∫
(σ2x2φ)dv =

∫
v(σ2x2φ)′′dx.

Substituting this in (∗),

0 =

∫
(
1

2
(σ2x2φ− ∂φ

∂τ
)vdx.

But the payoff h, and so the conditional density v, is arbitrary. So the
integrand here must vanish, giving the forward equation

∂φ

∂t
=

1

2

∂2

∂x2
(σ(t, x)2x2φ). (ForEq) [7]

Suppose now that the option above is a call C with strike K. Then

C(T,K) = E[(F −K)+] = E[(F −K)I(F > K)] =

∫ ∞
K

(x−K)φ(t, x)dx.

So, first differentiating under the integral sign w.r.t. K,

∂C(T,K)/∂K = −
∫ ∞
K

φ(T, x)dx

(the (x−K) term vanishes at the lower limit). So

∂2C(T,K)/∂K2 = φ(T,K). (∗∗) [4]

Next, differentiate w.r.t. T under the integral sign and use (ForEq):

∂C(T,K)

∂T
=

∫ ∞
K

(x−K)
∂φ(T, x)

∂T
dx

=

∫ ∞
K

(x−K).
1

2
(σ2x2φ)′′dx (by (ForEq))

= −1

2

∫ ∞
K

(σ2x2φ)′dx = −1

2

∫ ∞
K

d(σ2x2φ) (integrating by parts)

=
1

2
σ(T,K)2K2φ(T,K) (lower limit, hence the -),

performing the integration. This gives (i). [3]
Then (ii) follows from (i) and (∗∗). [3]

[Seen – lectures] NHB
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