
MATH482 EXAMINATION SOLUTIONS, 2014

Q1. (i) Arbitrage. An arbitrage opportunity is the possibility of making a
riskless profit – a trading strategy in which one starts with nothing, never
makes a loss, but might make a profit.
(ii) The assumption of absence of arbitrage is unrealistic – but no more
so than the other assumptions of a perfect market (same interest rate for
borrowing and lending, no liquidity restrictions/transaction costs/taxes etc.).

Small arbitrage opportunities may be present and persist. Large ones
would attract the attention of speculators and other market participants.
This would change the balance of supply and demand, and so prices, so the
arbitrage opportunity would shrink (be ‘arbitraged away’).
(iii) If the market is arbitrage-free,
(a) there exists an equivalent martingale measure;
(b) equilibrium may be possible (it is impossible if arbitrage is present). [7]
(ii) Completeness. A market is complete if every contingent claim can be
replicated, by a combination of stock and cash. Now any such combination
may be priced uniquely (count the cash; count the stock; look up the stock
price; do the arithmetic). So in a complete market, prices are unique, and
do not depend on the attitude to risk of investors (their utility function).

In reality, prices are not unique – typically, they fill out an interval, the
bid-ask spread. This reflects the difference between buying and selling, and
the need to have a margin between the two to cover overheads etc. [6]
(iii) Equivalent martingale measures (EMMs). We model the uncertainty in
risky stocks by a probability measure, P say. As stock prices occur in the
real economy, we call P the real(-world) measure. As always, we discount
prices over time, to work with real prices rather than nominal prices. Two
measures P and Q are called equivalent if they have the same null sets (sets
of probability 0) – i.e., the same things are possible/impossible under both
P and Q. We call P ∗ an/the equivalent martingale measure if under P ∗,
discounted asset prices become martingales. The two key results re:
No-arbitrage Theorem. The market has no arbitrage (is NA) iff EMMs exist.
Completeness Theorem. The market is complete iff EMMs are unique. [6]
(iv) Risk-neutral valuation. For complete NA markets, the unique EMM
P ∗ is called the risk-neutral measure. The risk-neutral valuation formula says
that for a complete NA market, asset prices at time t can be calculated as
the conditional P ∗-expectation of the discounted payoff at expiry T . [6]
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Q2 Doubling strategy. (i) With N the number of losses before the first win:

P (N = k) = P (L,L, · · · , L(k times),W ) = (
1

2
)k.

1

2
= (

1

2
)k+1.

That is, N is geometrically distributed with parameter 1/2. As

∞∑
k=0

P (N = k) =
∞∑
0

(
1

2
)k+1 =

1

2
/(1− 1

2
) = 1,

P (N <∞) = 1: N <∞ a.s. So one is certain to win eventually. [5]
(ii) Let Sn be one’s fortune at time n. When N = k, one has losses at trials
1, 2, 3, . . . , k, with losses 1, 2, 4, . . . , 2k−1, followed by a win at trial k + 1 (of
2k). So one’s fortune then is

2k − (1 + 2 + 22 + . . .+ 2k−1) = 2k − (2k − 1) = 1,

summing the finite geometric progression. So one’s eventual fortune is +1
(which, by (i), one is certain to win eventually). [5]
(iii) N has PGF

P (s) := E[sN ] =
∞∑
n=0

skP (N = k) =
∞∑
0

sk.(
1
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0
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s)k =

1

2
/(1− 1

2
s) = 1/(2− s) :

P ′(s) = E[NsN−1] = (2− s)−2; P ′(1) = E[N ] = 1.

So the mean number of losses is 1, and the mean time the game lasts is 2. [5]
(iv) As with the simple random walk: this is an impossible strategy to use
in reality, for two reasons:
(a) It depends on one’s opponent’s cooperation. What is to stop him trying
this on you? If he does, the game degenerates into a simple coin toss, with
the winner walking away with a profit of 1 (pound, or million pounds, say)
– suicidally risky. [5]
(b) Even with a cooperative opponent, it relies on the gambler having an
unlimited amount of cash to bet with, or an unlimited line of credit – both
hopelesly unrealistic in practice. [5]
[Seen – Problems]
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Q3 Properties of conditional expectation.
The conditional expectation of a random variable Y with E[|Y |] < ∞

given a σ-field C, E[Y |C], is defined by:
E[Y |C] is C-measurable; [3]∫

C
E[Y |C]dP =

∫
C
Y dP ∀C ∈ C a.s. [3]

If C is the trivial σ-field {∅,Ω}, E[Y |C] = E[Y ]: a conditional expectation
given no information is just an ordinary unconditional expectation. [2]

If C = F is the whole σ-field (in the definition of the probability space),
E[Y |C] = Y : a conditional expectation given full information is the random
variable itself (no randomness left to average over). [2]
Iterated conditional expectation (i). If C ⊂ B, E[E(Y |B)|C] = E[Y |C] a.s.

Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫
C
EC[EBY ]dP =

∫
C
EBY dP (definition of EC as C ∈ C)

=
∫
C
Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). // [6]
Iterated conditional expectation (ii). If C ⊂ B, E[E(Y |C)|B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect on it (‘taking out what is known’: given B, we know Y , so it counts as
a constant and we can take it out through integrals, i.e. expectations). [4]
Conditional Mean Formula. E[E(Y |B)] = EY P − a.s.
Proof. Take C = {∅,Ω}. // [2]
Projections. Above, take B = C:

E[E[X|C]|C] = E[X|C].

This says that the operation of taking conditional expectation given a sub-σ-
field C is idempotent – doing it twice is the same as doing it once. Also, taking
conditional expectation is a linear operation (it is defined via an integral,
and integration is linear). So as in Linear Algebra, being idempotent and
linear it is called a projection (Example: (x, y, z) 7→ (x, y, 0) projects from
3-dimensional space onto the (x, y)-plane). [3]
[Seen – lectures]
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Q4. Vega for calls. With

φ(x) := e−
1
2
x2/
√

2π, Φ(x) :=
∫ x

−∞
φ(u)du

the standard normal density and distribution functions, τ := T − t the time
to expiry, the Black-Scholes call price is

Ct := StΦ(d1)−Ke−r(T−t)Φ(d2), (BS)

d1 :=
log(S/K) + (r + 1

2
σ2)τ

σ
√
τ

, d2 :=
log(S/K) + (r − 1

2
σ2)τ

σ
√
τ

= d1−σ
√
τ .

(i) So

φ(d2) = φ(d1 − σ
√
τ) =

e−
1
2
(d1−σ

√
τ)2

√
2π

=
e−

1
2
d21

√
2π

.ed1σ
√
τ .e−

1
2
σ2τ :

φ(d2) = φ(d1).e
d1σ
√
τ .e−

1
2
σ2τ . [5]

(ii) Exponentiating the definition of d1,

ed1σ
√
τ = (S/K).erτ .e

1
2
σ2τ . [3]

(iii) Combining (i) and (ii),

φ(d2) = φ(d1).(S/K).erτ : Ke−rτφ(d2) = Sφ(d1). (∗) [5]

Differentiating (BS) partially w.r.t. σ gives

v := ∂C/∂σ = Sφ(d1)∂d1/∂σ −Ke−rτφ(d2)∂d2/∂σ.

This and (∗) give

v := ∂C/∂σ = Sφ(d1)∂(d1 − d2)/∂σ = Sφ(d1)∂σ
√
τ)/∂σ = Sφ(d1)

√
τ > 0.

[5]
Vega for puts.

The same argument gives v := ∂P/∂σ > 0, starting with the Black-
Scholes formula for puts. Equivalently, we can use put-call parity

S + P − C = Ke−rτ : ∂P/∂σ = ∂C/∂σ > 0. [4]

Interpretation: ”Options like volatility”: the higher the volatility, i.e. the
more uncertainty there is, the more the ”insurance policy” of an option is
worth. [3]
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Q5 Black-Scholes formula. (i) There is no point in investing in a risky stock,
at mean return rate µ, if one can do as well or better by investing risklessly
at rate r. So one should invest all one’s funds in cash, unless µ > r. The
excess return µ − r is risky, and σ measures the risk involved. The Sharpe
ratio is λ := (µ − r)/σ. This is the usual measure to use, e.g. in deciding
between one risky investment and another. [3]

By Markowitzian diversification, the manager would wish to have some
cash and some stock; he would increase the proportion of his funds held in
stock as λ increases. [2]
(ii) The Black-Scholes formula gives the value of a European option on a
risky stock with dynamics as in (∗). One should:
(a) pass from the real-world (or physical) probability measure P to the risk-
neutral probability measure P ∗ – the probability measure equivalent to P
(same events possible, same events impossible), but under which the dynam-
ics are

dSt = St(rdt+ σdBt), [4]

– i.e., one replaces µ by r;
(b) discount (by the riskless interest rate r), so passing from nominal prices
to real prices. This replaces the dynamics by

dSt = St.σdBt. [4]

This can be integrated (stochastic exponential), to give ST . The Risk-Neutral
Valuation Formula gives the option price as the expectation of the payoff (a
simple function of S, (S−K)+ or (K−S)+) under P ∗. The resulting integral
can be evaluated in two terms, both involving Φ, one involving also ST , the
other the discounted strike price K. [4]
(iii) The Black-Scholes formula does not involve µ, as it is replaced by r in
step (a) above (technically, this is an application of Girsanov’s theorem). [3]
(iv) Here σ is the volatility of the stock, a measure of how changeable it is
as market conditions change. We do not know it, so have to estimate it.
Since the Black-Scholes price is an increasing function of σ (‘options like
volatility’), one can infer σ (or what the market thinks it is) by matching it
to the value giving the price at which the relevant option is currently trading
(implied volatility). [3]

Alternatively, one can look at the price process over time and use Time
Series methods from Statistics to estimate σ (historic volatility). [2]
[Seen – lectures]
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Q6 Insurance.
(i) Dependence and clustering of claims.

In the classical Cramér-Lundberg insurance model, claims arrive at Pois-
son instants and are independent, of each other and of the Poisson process.
This assumption holds good for normal conditions, but breaks down badly
under crisis conditions. For instance, different motor insurance claims arise
from different accidents, which typically do not influence each other. But, in
a crisis, a whole slew of different claims are caused by the same event, and
are heavily dependent! For example: Hurrican Matthew, which devastated
Haiti last month, and then made landfall in South Carolina, causing much
damage there and in North Carolina, caused many insurance claims, likewise
heavily dependent. This is the phenomenon of clustering of insurance claims
– analogous to the volatility clustering of financial markets, when volatility
clusters occur in response to financial crises. [12]
(ii) The Lundberg (adjustment) coefficient and convexity of the cumulant-
generating function (CGF).

In the standard notation, the Lundberg coefficient is defined in terms of
Z := X − cW , with X a typical claim size, c the premium rate and W a
typical inter-claim time, via its CGF, the log of its MGF:

κ(s) := logM(s) := logE[exp{s(X − cW )}]. [3]

Differentiating twice,

κ = logM, κ′ = M ′/M, κ′′ = [MM ′′ − (M ′)2]/M2. [3]

But by the Cauchy-Schwarz inequality,

(M ′)2 = (E[XesX ])2 ≤MM ′′ = E[esX ].E[X2esX ] [3]

(applying CS to the measure esX(ω)dP (ω), integrated over the probability
space Ω). So κ′′ ≥ 0. So κ is convex. So the graph of k intersects the real
line (or any other line) at most twice. It intersects the real axis at the origin
(M(0) = 1, so κ(0) = 0). If there is a second root, r > 0 (there may not be),
this is the Lundberg coefficient. [4]
[Seen – lectures] N. H. Bingham
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