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In the insurance context (below), the Poisson points represent the claim
arrivals, so the Poisson rate λ is the rate at which claims arrive; µ is the
mean claim size. So λµ has the interpretion of a claim rate – rate at which
money goes out of the company in claims.

Just as the mathematics of the Black-Scholes model (Ch. VI) is domi-
nated by Brownian motion, that of insurance is dominated by the Poisson
and compound Poisson processes. These are the basic prototypes, and all
we have time to cover in detail in this course. However, these are models, of
reality, and reality is always more complicated than any model! Box’s dictum
(George Box, British statistician, 1919-2013): All models are wrong. Some
models are useful. In more advanced work, more complicated and detailed
models are needed. So there is plenty of scope for useful applications in the
real world of any probability or statistics you know, or will learn! At the end
of the course (VII.5), we discuss briefly some generalisations. But to note for
now: the principal weakness of our assumptions here is the independence of
claims. This is reasonable under normal conditions, but not during a crisis.
Think of natural disasters such as major hurricanes, etc.

§3. Renewal theory

Renewal Processes
Suppose we use components – light-bulbs, say – whose lifetimesX1, X2, . . .

are independent, all with law F on (0,∞). The first component is installed
new, used until failure, then replaced, and we continue in this way. Write

Sn :=
n∑
1

Xi, Nt := max{k : Sk ≤ t}.

Then N = (Nt : t ≥ 0) is called the renewal process generated by F ; it is a
counting process, counting the number of failures seen by time t. Note that

SN(t) ≤ t.

Note. For stochastic processes, notations such as Nt and N(t) are used in-
terchangeably.

Renewal processes are often used, but the only ones we need here are the
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Poisson processes – those for which the lifetime law is exponential.

LLN for renewal theory.
The LLN (Week 6b) has a version for renewal theory (in particular, for

the Poisson process).

Theorem (LLN for Renewal Theory). For Xi (positive) iid with mean
µ, the renewal process N = (N(t)) satisfies

N(t)

t
→ 1

µ
(t→∞) a.s.

Proof. By definition of N(t) and Sn :=
∑n

1 Xk,

SN(t) ≤ t < SN(t)+1.

So as soon as N(t) > 0,

SN(t)

N(t)
≤ t

N(t)
<

SN(t)+1

N(t) + 1
.
N(t) + 1

N(t)
.

As t → ∞, N(t) → ∞ a.s. So the LLN the left tends to µ a.s.; so does the
first term on the right, while the second term on the right tends to 1. This
gives

t/N(t)→ µ (t→∞) a.s.

The result follows by inverting this. //

The renewal function
As above,

Nt/t→ 1/µ (t→∞), a.s.

If we apply the expectation operator E[.] formally, this suggests that

E[Nt]/t→ 1/µ (t→∞).

This is indeed true, but although its conclusion seems weaker than that of
the a.s. result, its proof if harder (though not as hard as that of the SLLN!).

Theorem (Renewal Theorem). If the mean lifetime length µ is finite, the
renewal function E[Nt] satisfies

E[Nt]/t→ 1/µ (t→∞).
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Proof. The conclusion with ≥ in place of = does indeed follow from the a.s.
result by taking expectations. This is by Fatou’s lemma, which we quote
from Measure Theory. [For proof, see e.g. a book on Measure Theory, or
my homepage, Stochastic Processes, I.5 Lecture 8.] For the ≤ part, choose
a > 0, and truncate the Xn at level a:

X̃n := min(Xn, a).

Write Ñt, µ̃ for the ‘tilde’ analogues of Nt, µ. By Wald’s identity,

E[X̃1 + · · ·+ X̃Ñt
] = E[X̃].E[Ñt] = µ̃.E[Ñt].

Now Ñt ≥ Nt (because of the truncation, there will be more renewals if
anything), and S̃Ñt−1 + X̃Ñt

≤ t+ a (the ‘t’ from the first term, the ‘a’ from
the second). So

E[Nt]/t ≤ E[Ñt]/t (Nt ≤ Ñt)

= µ̃−1E[X̃1 + · · ·+ X̃Ñt
]/t (above – Wald’s identity)

= µ̃−1E[S̃Ñt
]/t ( definition of S̃n)

≤ µ̃−1 (SN(t) ≤ t, and similarly for S̃n, Ñt).

So
lim supE[Nt]/t ≤ µ̃−1.

Now let a ↑ ∞: µ̃→ µ, giving the ≤ part and the result. //

With F the lifetime distribution function – that of each Xi – the distri-
bution function of Sn := X1 + · · · + Xn is F ∗ · · · ∗ F (n F s), the n-fold
convolution of F with itself, written F ∗n. Define

U(t) :=
∞∑
n=0

F ∗n(t).

This is called the renewal function of F . For, it gives the mean number
E[Nt] of renewals up to time t. This gives the reformulation of the Renewal
Theorem below.

Theorem (Renewal Theorem, second form). The renewal function
gives the mean number of renewals:

U(t) = E[Nt].
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So if the mean lifetime is µ,

U(t)/t→ 1/µ (t→∞).

Proof.

E[Nt] =
∞∑
0

nP (Nt = n)

=
∑

n[P (Nt ≥ n)− P (Nt ≥ n+ 1)]

=
∑

P (Nt ≥ n),

by partial summation (or Abel’s lemma). [This is the discrete analogue of
integration by parts. See e.g. a book on Analysis, or my homepage, M3P16
Analytic Number Theory, I.3.] But {Nt ≥ n} = {Sn ≤ t}, so

E[Nt] =
∑

P (Sn ≤ t) =
∑

F ∗n(t) = U(t),

giving the first part; the second part follows from the result above. //

The renewal theorem
Renewal theory needs a distinction between two cases. If the Xi are

integer-valued (when so are the Sn), or are supported by an arithmetic pro-
gression (AP), we are in the lattice case, otherwise in the non-lattice case.

The next result looks like a differenced form of the last one. It is due
to David Blackwell (1919-2010) in 1953. We state it for the non-lattice case
and µ <∞, but it extends to the lattice case and µ =∞ also.

Theorem (Blackwell’s renewal theorem). In the non-lattice case,

U(t+ h)− U(t)→ h/µ (t→∞) ∀h > 0.

This famous result has a number of different proofs, but we do not include
one here (my favourite is only a few lines, but needs a prerequisite beyond
our scope here).

Blackwell’s theorem has a number of variants. The one we need (which
we also quote) is due to W. L. Smith and W. Feller. Recall the Riemann
integral (defined for functions on a finite interval), and the Lebesgue integral
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which generalises it (defined for functions on e.g. the line, plane etc.). We
need a new concept.

Definition. Divide the line into intervals In,h := (nh, (n+1)h]. For a function
z on R and x ∈ In,h, write

zh := sup{z(y) : y ∈ In,h}, zh := inf{z(y) : y ∈ In,h}.

Call z directly Riemann integrable (dRi) if
∫
zh :=

∫∞
−∞ zh(x)dx is finite for

some (equivalently, for all) h > 0, and similarly for
∫
zh, and∫

zh −
∫
zh → 0 (h→ 0).

This is the same as Riemann integrability if z is supported on some finite
interval, but for z of unbounded support is stronger than Lebesgue integra-
bility: z is dRi iff it is Lebesgue integrable, and both

∫
zh and

∫
zh have a

common limit
∫
z as h → 0. Condition dRI will hold whenever we need it.

We quote that dRi needs z bounded and a.e. continuous (w.r.t. Lebesgue
measure), and that this plus z of bounded support implies dRi. Also, z non-
increasing and Lebesgue integrable imples dRi.

The renewal equation for F and z (both known) is the integral equation

Z(t) = z(t) +

∫ t

0

Z(t− u)dF (u) (t ≥ 0) : Z = z + F ∗ Z. (RE)

Here F (for us, the lifetime distribution above) and z are given, and (RE) is
to be solved for Z.

Theorem (Key Renewal Theorem). If z in (RE) is dRi, then for U the
renewal function of F as above,

limt→∞Z(t) = limt→∞U ∗ z(t) =
1

µ

∫ ∞
0

z(x)dx.

The proof of the Key Renewal Theorem from Blackwell’s Renewal The-
orem is not long or hard, but as it is Analysis rather than probability or
insurance mathematics, we omit it. For a proof, see e.g. [RSST, 6.1.4 p216-
219.
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§4. The Ruin Problem.

Consider the cash flow of an insurance company. The premium income
comes in from the policy holders at constant rate, c say (to a first approx-
imation: the company hopes to attract more policy holders, and premium
rates will typically vary on renewal – but are constant during the lifetime of
the policy). So income over time t is ct. If the company has initial capital u,
its capital at time t is thus u+ ct. Meanwhile, claims occur. We model these
as occurring at the instants of a Poisson process of rate λ, the claims being
independent and identically distributed (iid) with claim distribution F , with
CF φ, mean µ and variance σ2. So the number of claims over the interval
[0, t] is N(t), which is Poisson distributed with parameter λt: N(t) ∼ P (λt).
So by the Theorem of VII.2 above, the total claim has mean λµt. Thus cash
comes in at rate c, but goes out at rate λµ. This simple argument suggests
– what is indeed true – that a necessary condition for the company to avoid
bankruptcy is

c > λµ :

money should come in faster than it goes out. The proof is by the Strong
Law of Large Numbers (LLN, as above). In the critical case c = λµ the
company is ‘balanced on a knife-edge’, and will soon go bankrupt.

The company thus must have c > λµ, so we assume this from now on.
But, any insurance company has only finite funds; it may face arbitrarily
severe runs of bad luck; combining these, bankruptcy is always a possibility.
(Indeed, this is true for all companies, not just insurance companies! This
is why bankruptcy needs to be recognised as a possibility, and governed by
bankruptcy law. This varies from time to time and from country to country
– a very interesting and important subject, but not one we can pursue here.)

Clearly the company’s best defence against bankruptcy is to have a large
cash reserve u, to act as a buffer, or ‘insurance policy’, against such runs of
bad luck. Clearly the probability of ruin – ruin probability – decreases with
u. How fast? The classical ruin problem is to investigate this question, to
which we return below.
Note. We may if we wish take c = 1 for convenience. This (slightly) simpli-
fies the formulae. It amounts to changing from real time to operational or
business time – looking at the situation in the time-scale most natural to it.
Recall that there are no natural units of time or space (except the Planck
scale, at subatomic level, for those with a background in Physics!): time is
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measured in seconds, minutes, hours, days (60 s to the m, 60 m to the h, 24
h to the day – pre-decimal), and length in metres (metric system – mm, cm,
m, km) or inches/feet/yards/miles (Imperial measure) – neither is natural,
both are conventional.

The Net Profit Condition (NPC)
With c the premium rate, Xi the claim sizes and Wi the inter-claim waiting
times, write

Zi := Xi − cWi.

Then
E[Zi] = E[Xi]− cE[Wi] = µ− c/λ.

The first term on the right measures money out (of the company), the second
measures money in. As we have seen, to avoid bankruptcy we need (‘more
in than out’)

E[Zi] := E[Xi]− cE[Wi] = µ− c/λ < 0 : c > µλ. (NPC)

This is called the net profit condition (NPC). For as we have seen, λµ is the
claim rate (rate at which cash goes out to claims); c is the premium rate
(rate at which cash comes in, through premiums); we need (NPC) – ‘more
in than out’ for survival.

Safety loading and premium calculation
The first duty of any company is to stay solvent – to avoid bankruptcy.

To do this, an insurance company has to satisfy (NPC): c > µλ.
But, like any other business, the insurance business is competitive. If

premiums are too low, the firm goes bankrupt (above) because its premium
income fails to meet its outgoings on claims. But if premiums are too high,
the firm will not be competitive with other firms; over time, it will lose
market share to them, and will eventually go bankrupt (or otherwise go out
of business – e.g., be taken over) as premium income declines to be too small
to meet overheads. So the firm needs to take a policy decision as to how
much to charge in premiums. This is measured by the safety loading (SL),
ρ, defined by

c = (1 + ρ)
E[Xi]

E[Wi]
= (1 + ρ)λµ : ρ :=

c− λµ
λµ

. (SL)

Thus ρ > 0 in (SL) is equivalent to (NPC).
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5. Lundberg’s inequality
Before, we used the characteristic function (CF), defined for a random

variable X by φ(t) := E[eitX ], for t real. The reason for using complex
numbers here – for the i :=

√
−1 – is to ensure that the CF always exists. It

does, because

|φ(t)| = |E[eitX ]| ≤ E[|eitX |] = E[1] = 1.

(Recall Euler’s formula: for θ real, eiθ = cos θ+isin θ, so |eiθ| =
√
cos2θ + sin2θ =

1. Recall also that expectation is integration (w.r.t. a probability distribu-
tion), so ‘mod of integral ≤ integral of mod’.) But we now find it convenient
to use real numbers, and switch to the moment-generating function (MGF),

M(s) := E[esX ].

This is certainly defined for s = 0: M(0) = E[e0] = E[1] = 1. But it may
not be defined (finite) for all (or even any) s 6= 0. (Example: the exponential
distribution E(λ) with parameter λ has MGF λ/(λ − s), but this is only
finite for s < λ.) We now assume the small claim condition (SCC),

M(s) := E[esX1 ] <∞ ∀s ∈ (−s0, s0), for some s0 > 0. (SCC)

This implies that the tail of X1 decays exponentially. For (Markov’s Inequal-
ity): for s ∈ (0, s0) and x > 0,

M(s) = E[esX1 ] ≥ E[esX1 ;X1 > x] ≥ esxE[1;X1 > x] = esxP (X1 > x) :

P (X1 > x) ≤ e−sxM(s) ∀x > 0.

Differentiating the MGF twice (and writing X for X1 for convenience):

M(s) = E[esX ], M ′(s) = E[XesX ], M ′′(s) = E[X2esX ] ≥ 0.

Also, the MGF M(s) is smooth (we can differentiate it as often as we like,
where it is defined). So its graph has a tangent, and as M ′′ ≥ 0, the tangent
is increasing – the graph bends upwards. Such functions are called convex.
Also, as M(0) = 1, the graph goes through 1 at the origin. Now smooth
convex functions can intersect any line at most twice (e.g., a parabola may
not cut a line, or can cut it once (double point of contact), or twice, but not
more).
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The crucial assumption is that M(s) cuts the line y = 1 twice, once (nec-
essarily) at the origin and once at a positive point r.

Definition.
The Lundberg coefficient (or adjustment coefficient) r, which we assume

to exist in what follows, is the point r > 0 (we assume r exists; it is then
unique) such that r = s satisfies

MZ1(s) := E[exp{s(X1 − cW1)}] = 1. (LC)

The right is (writing X,W for X1,W1) MX(s).MW (−cs). Now as W ∼ E(λ),
W has Laplace-Stieltjes transform (LST) E[e−tW ] = MW (−t) =

∫∞
0
e−tx.λe−λxdx =

λ/(λ+ t). So the defining property of the Lundberg (adjustment) coefficient
is (writing M for MX for short)

M(r).
λ

λ+ cr
= 1 : M(r) =

λ+ cr

λ
= 1 +

cr

λ
. (LC ′)

Theorem (Lundberg’s Inequality). Assuming that the Small-Claims
Condition (SCC) holds and that the Lundberg coefficient r in (LC) exists,
the ruin probability ψ(u) with initial capital u and over all time satisfies

ψ(u) ≤ e−ru.

Proof. Write
Sn := Z1 + · · ·+ Zn, Zi := Xi − cWi.

Then S = (Sn) is a random walk, with step-lengths Zi := Xi − cWi. As
the ruin probability increases with time, the ruin probability ψ(u) is the
increasing limit of the ruin probability ψn(u) with just the first n claims Xi

and waiting times Wi involved:

ψn(u) = P (max1≤k≤nSk > u) = P (Sk > u for some k ∈ {1, · · · , n} ).

We prove that
ψn(u) ≤ e−ru ∀n ∈ N, u > 0. (∗)

The result follows from this by letting n → ∞; we prove (∗) by induction
(on n).

The induction starts, by Markov’s Inequality:

ψ1(u) ≤ e−ruMZ1(r) = e−ru,
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by definition of the Lundberg coefficient: MZ1(r) = 1.
Assume that (∗) holds for n, and write F for FZ1 , the distribution function

of Z1. Then

ψn+1(u) = P (max{Sk : 1 ≤ k ≤ n+ 1} > u)

= P (Z1 > u) + P (Z1 ≤ u,max{Z1 − (Sk − Z1) : 2 ≤ k ≤ n+ 1} > u)

= p1 + p2,

say.
We now make our first use of the renewal argument, which will allow us

to reduce the proof of our main results to an application of the Key Renewal
Theorem. The idea is to condition on the value of the first claim Z1, and let
the process ‘renew itself’ with the first claim, starting afresh thereafter. So,
starting the random walk after Z1 = x in the p2-term above and conditioning
on the value x of Z1,

p2 =

∫
(−∞,u]

P (max1≤k≤n(x+ Sk) > u)dF (x).

In full, this is a use of the Conditional Mean Formula. For an event A, the
random variable IA (its indicator function: 1 if ω ∈ A, 0 if not) has mean

E[IA] = P (A).

Then conditioning on information B (size of first claim here),

P (A) = E[IA] = E[E[IA|B]].

Now

p1 =

∫
(u,∞)

dF (x) ≤
∫
(u,∞)

er(x−u)dF (x),

as r > 0, while

p2 =

∫
(−∞,u]

P (max1≤k≤n(x+ Sn) > u)dF (x)

=

∫
(−∞,u]

ψn(u− x)dF (x)

≤
∫
(−∞,u]

er(x−u)dF (x) (by the induction hypothesis).
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Combining the domains (−∞, u] and (u,∞) of integration here,

p1 + p2 ≤
∫ ∞
−∞

er(x−u)dF (x) = e−ru
∫
erxdF (x) = e−ruM(r) = e−ru,

as M(r) = 1 by definition of the Lundberg coefficient r, completing the in-
duction. //

Example: Exponential claims.
Recall the exponential distribution E(λ) with parameter λ, which has

mean 1/λ and MGF λ/(λ − s). With the arrival process Poisson with rate
λ as above (so the inter-claim waiting times are E(λ)), consider now the
simplest case, when the claim sizes are also exponential, E(γ) say. So Wi has
MGF γ/(γ − s), cWi has MGF γ/(γ − cs), and Zi = Xi − cWi has MGF

MZ(s) = MX(s)McW (−s) =
γ

γ − s
.

λ

λ+ cs
.

As usual, we assume the Net-Profit Condition (NPC):

E[X]/E[W ] = λ/γ < c.

Then the Lundberg coefficient r is the (unique, positive) root of

MZ(r) =
γ

γ − r
.

λ

λ+ cr
= 1.

This is a quadratic,

Q(r) := −[(cr + λ)(−r + γ)− λγ] = cr2 + (λ− cγ)r = r(cr + λ− cγ) = 0,

with positive root

r = γ − λ

c
> 0,

by (NPC). In terms of the safety loading ρ,

c =
E[X]

E[W ]
(1 + ρ) =

λ

γ
(1 + ρ).

So in terms of the safety loading ρ rather than the premium rate c,

r = γ
ρ

(1 + ρ)
,
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and the Lundberg inequality is

ψ(u) ≤ exp{−uγρ/(1 + ρ)}.

This is nearly exact: in this case, there is a constant C with

ψ(u) = C exp{−uγρ/(1 + ρ)}.

Note. This example is unusually simple: in general, there is no closed form
for r, and we have to find it by numerical methods. This is typically the case
for solutions of transcendental (rather than algebraic) equations.

Cumulant-generating function (CGF)
Definition. The cumulant-generating function (CGF) κ(s) of a distribution
is the logarithm of the MGF M :

κ(s) := logM(s).

Thus the Lundberg (adjustment) coefficient may also be defined by

κZ1(s) = logMZ1(s) := logE[exp{s(X1 − cW1)}] = 0. (LC ′)

Like the MGF, the CGF is also convex. For,

κ = logM, κ′ = M ′/M, κ′′ = [MM ′′ − (M ′)2]/M2.

By the Cauchy-Schwarz inequality,

(M ′)2 = (E[XesX ])2 ≤MM ′′ = E[esX ].E[X2esX ]

(E[.] is an integral, over the probability space Ω w.r.t. the probability mea-
sure P , or dP (ω); here we apply C-S for the measure esX(ω)dP (ω)). So
κ′′ ≥ 0. So κ is convex. The graph of κ(s) has two roots, s = 0 and s = r,
the Lundberg (adjustment) coefficient.
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