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6. The ruin problem and the renewal equation.

With initial capital u, the company’s capital at time t is

Ct = u+ ct−
Nt∑
1

Xi.

The probability of (ultimate) ruin and of survival are

ψ(u) = P (inf0<t<∞Ct < 0|C0 = u),

ψ(u) := 1− ψ(u) = P (Ct ≥ 0 ∀t|C0 = u).

The key to the relevance of renewal methods here – the renewal argument
we used before – is that the capital process renews itself at the time of the
first claim: if this is at time W1 = s and of size X1 = x, it begins again,
with initial capital u+ cs−x (of course if this is negative, the company goes
bankrupt when it receives its first claim!). We can condition (as above) on
the time W1 (density λe−λs) and size X1 (distribution F ) of first claim:

ψ(u) =

∫ ∞
0

λe−λsds

∫ u+cs

0

dF (x)ψ(u+ cs− x).

Change variable from s to t := u + cs: the limits 0 < x < u + cs, s > 0
become 0 < x < t, t > u:

ψ(u)e−λu/c =
λ

c

∫ ∞
u

λe−λt/cdt

∫ t

0

dF (x)ψ(t− x).

This shows that ψ is differentiable (as the exponential and the integral are).
Differentiating w.r.t. u:

e−λu/c(ψ
′
(u)− λ

c
ψ(u)) = −λ

c
e−λu/c

∫ u

0

ψ(u− x)dF (x) :

ψ
′
(u) =

λ

c
ψ(u)− λ

c

∫ u

0

ψ(u− x)dF (x).
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Integrate over u ∈ [0, t], and write

h(y) :=

∫ t−y

0

ψ(u)du (0 ≤ y ≤ t), 0 (y > t).

The first term on the right integrates to h(0), so

ψ(t)− ψ(0)− λ

c
h(0) = −λ

c

∫ t

0

du

∫ u

0

ψ(u− x)dF (x)

= −λ
c

∫ t

0

duh(x)dF (x) (def. of h(.) on [0, t])

= −λ
c

∫ ∞
0

duh(x)dF (x) (h(.) = 0 on [t,∞])

=
λ

c

∫ ∞
0

duh(x)d(1− F )(x).

Integrating by parts, the integrated term on the right cancels with the last
term on the left:

ψ(t)− ψ(0) = −λ
c

∫ ∞
0

h′(x)(1− F (x))dx :

ψ(t) = ψ(0) +
λ

c

∫ ∞
0

ψ(t− x)(1− F (x))dx.

This integral equation for ψ translates into one for ψ itself:

ψ(u) =
λ

c

(∫ ∞
u

(1− F (x))dx+

∫ ∞
0

ψ(u− x)(1− F (x))dx
)
. (∗)

Note that F has mean

µ :=

∫ ∞
0

xdF (x) = −
∫ ∞
0

xd(1− F )(x).

Integrating by parts (rather as above), the integrated term vanishes, giving

µ =

∫ ∞
0

(1− F (x))dx.

Thus (1−F (x))/µ is a probability density on (0,∞), and the integral equation
(∗) above is of renewal-equation type. This is crucial: it reduces the proof of
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the main result (Cramér’s estimate of ruin, below) to an application of the
Key Renewal Theorem.

Multiplying both sides of (∗) by eru gives

ψ(u)eru =
λ

c
eru
∫ ∞
u

(1− F (x))dx+

∫ ∞
0

ψ(u− x)er(u−x).
[λ
c

(1− F (x)erx
]
dx.

(∗∗)
7. Cramér’s estimate of ruin.

Theorem (Cramér’s estimate of ruin).
For the Cramér-Lundberg model, under the Net Profit Condition (NPC)

and the Lundberg condition (LC), with r the Lundberg coefficient and ψ(u)
the probability of ruin with initial capital u,

eruψ(u)→ C : ψ(u) ∼ Ce−ru (u→∞),

where the constant C is given by

C =
c− λµ

cr
∫∞
0
xerx(1− F (x))dx

.

Proof. From the existence of the Lundberg coefficient r > 0 in (LC),

M(r) :=

∫ ∞
0

erxdF (x) = −
∫ ∞
0

erxd(1− F )(x) = 1 +
cr

λ
.

Integrating by parts (again as above!), the integrated term is 1, giving∫ ∞
0

(1− F (x))erxdx =
c

λ
:

λ

c
(1− F (x))erx

is a probability density on (0,∞), which shows that (∗∗) is an integral equa-
tion of renewal type (RE). So by the Key Renewal Theorem, its solution
ψ(u)eru has a limit, C say, as u→∞, giving the first (and more important)
part.

To identify the limit C: from the Key Renewal Theorem, C is the integral
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of the first (z-) term on the right, divided by the mean of the probability
distribution in the convolution. The integral term is λ/c times∫ ∞
0

erudu

∫ ∞
u

(1− F (x))dx =
1

r

∫ ∞
0

[

∫ ∞
u

(1− F (x))dx]d(eru)

=
1

r
[eru

∫ ∞
u

(1− F (x))dx]∞0 +
1

r

∫ ∞
0

eru(1− F (u))du

= −µ
r

+
c

rλ
=
c− λµ
cr

,

by the calculation above. So, in the notation of the Key Renewal Theorem,∫ ∞
0

z(x)dx =
λ

c
.
c− λµ
cr

.

The mean of this density (the ‘µ’ term in the Key Renewal Theorem) is

λ

c
.

∫ ∞
0

xerx(1− F (x))dx.

So C is their ratio:

C =
c− λµ

cr
∫∞
0
xerx(1− F (x))dx

. //

Note. 1. The argument above draws on several sources: [Mik 4.2.2, 166-171],
[AA, 4.5a p90], [A, IV.2 Ex. 2.3; IV.4, 5], [RSST, 5.3.2, 5.4.2].
2. In addition to the Key Renewal Theorem, the crux in the above is the
change of measure

F = F (dx) 7→ λ

c
(1− F (x))erxdx.

This is also called exponential tilting and the Esscher transform, after the
Swedish actuary Fredrik Esscher in 1932. (It also occurs in large deviations,
important in many areas of probability, statistics and statistical mechanics.)
This change-of-measure technique is of course also related to that in Gir-
sanov’s theorem in mathematical finance (Ch. VI).

Filip Lundberg
Filip Lundberg (1876-1965) was a Swedish actuary and pioneer of the
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theory of collective risk. His work in actuarial mathematics goes back to
1903, long before probability theory as we know it existed. He is credited
by Cramér (1969, 1976) as initiating the theory of collective risk, in a series
of papers in the late 1920s. Here, as in the work of Cramér below, one sees
the modern formulation: the income stream of an insurance company, from
premiums, is deterministic and linear; the outgoings, to meet claims, form
a compound Poisson process, from the claims process (a Poisson process, of
rate or intensity λ say) and the claim-size distribution (F say). Given the
company’s initial capital, u say, one studies the dependence of the probability
of ruin (clearly positive) as a function of u and the current time, obtaining
the familiar exponential estimate.

Lundberg may be regarded as having introduced the Poisson process, the
foundation stone of actuarial mathematics. But one must bear in mind that
the very term stochastic process is anachronistic here: the term was coined
by Khinchin in the 1920s, and the necessary mathematical underpinning had
to wait for Kolmogorov’s Grundbegriffe of 1933.

Cramér (1969) draws attention to the implications of Lundberg’s work
for reinsurance. This field is of ever-growing importance, as the financial
world becomes larger and more complicated, as it poses in modern form Ju-
venal’s famous question (VII.1): quis custodiet ipsos custodes? Who guards
the guards? Who insures the insurers? Who reinsures the reinsurers?

Harald Cramér
Harald Cramér (1893-1985) was a Swedish mathematician and probabilist

of great distinction. In his personal recollections (Cramér, Half a century
with probability, Annals of Prob.(1976)) he writes, of the period after he
obtained his PhD (in 1917, in analytic number theory, under Marcel Riesz):
“For a young Swedish mathematician of my generation, who wanted to find
a job that would enable him to support a family, it was quite natural to turn
to insurance. It was a tradition for Swedish insurance companies to employ
highly qualified mathematicians as actuaries ...” (he continues to describe
how his actuarial and insurance work led him into probability theory). It
is by no means unusual for people to be drawn into a field for such reasons
(Doob in probability in the US, and Bartlett and Cox in statistics in the
UK, come to mind). In 1929 Cramér became the first holder of the chair
in Actuarial Mathematics and Mathematical Statistics at the University of
Stockholm – an important event in the development of actuarial mathemat-
ics in Scandinavia, and indeed more generally.
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The Cramér estimate of ruin (above) of 1930 is perhaps Cramér’s most
prominent contribution to actuarial and insurance mathematics, and with it
the now-standard Cramér-Lundberg model in insurance, as we will now call
the model above.

§8. Complements

More general processes
The classical Cramér-Lundberg model above is the basic prototype in in-

surance mathematics, but it is by no means the only one, and is not general
enough for all purposes.
1. Non-homogeneous Poisson processes.

These we have met before. Here the Poisson rate λ(t) may vary with time.
Matters become more complicated, but the theory may be carried through
much as before.
2. Cox processes.

These were introduced by D. R. (Sir David) Cox (1924 - ) in 1955, under
the name doubly stochastic Poisson process or mixed Poisson process. Here
the Poisson rate is random. This makes things more flexible and realistic, as
well as more complicated.

Perhaps the most important case of a Cox process is where the rate has
a Gamma distribution, when it is called a Pólya process. Recall that the
Gamma distribution is the prototype of an error (or noise) distribution on
the positive half-line, just as the Normal is on the line. For background here,
see Generalised Linear Models (GLMs) in regression, in statistics.
3. Lévy processes.

The compound Poisson process models a situation where we can clearly
identify the jumps. But what matters to the company is the flow of cash. For
a large company, claims of small (or even ordinary) size may be so numerous
as to be treated as ‘small change’; it is the large claims that predominate, as
these can be lethal. Allowing for this, it makes sense to generalise to Lévy
processes (named after the great French probabilist Paul Lévy (1886 - 1971)
for his pioneering work on them in the 1930s). These are stochastic processes
with stationary independent increments. By the Lévy-Khintchine formula
and the Lévy-Itô decomposition, they may be decomposed into three inde-
pendent components: (i) a linear deterministic drift (trivial); (ii) a Brownian-
motion component; (iii) a sum of jumps (any of these may be absent). The
jumps case splits, into (a) only finitely many jumps in finite time (finite ac-
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tivitiy, FA – the compound Poisson case above); (b) infinitely many jumps
in finite time (infinite activity, IA). The theory can be extended to the Lévy
case; for details, see e.g. [Kyp].
4. Gerber-Shiu theory.

This theory (Hans Gerber and Elias Shiu, 1997 and 1998) looks at the
financial situation of a company at ruin or bankruptcy. This is an important
matter!:
(i) The size of the cash reserve just before failure governs how much in the
pound (dollar, euro, ...) the creditors will receive.
(ii) The overshoot – amount of the deficit which triggers failure – will be
used by the liquidators, creditors, regulators etc. to determine whether or
to what extent the company was negligent. This has important legal im-
plications. Never forget that it is illegal under the Companies Act to trade
while insolvent – or to enter into a transaction without the capacity to carry
it through. A transaction needs two counter-parties, each willing to trade,
and each able to do so. Each has to trust the other here, and inability to
complete a deal is a breach of trust here. See e.g. [Kyp, Ch. 10].

Related problems and processes
Fluctuation theory.

The ruin problem above involves the infimum (minimum) over time of
the cash balance of the company, or equivalently the supremum (maximum)
of the liability. Thus for a process X := {Xt}, the supremum and infimum
processes are relevant:

X(t) := sup{Xs : s ∈ [0, t]}, X(t) := inf{Xs : s ∈ [0, t]}.

Related to these is the reflected process, X −X:

(X −X)(t) := X(t)−X(t) ≥ 0.

The study of these and related functionals is called fluctuation theory – cf.
the title of Kyprianou’s book [Kyp], where ruin problems are indeed studied.
Queues and dams.

Other areas of Applied Probability involve such functionals and processes,
which have to be non-negative, for example, storage processes [Kyp Ch. 4]
(one cannot store a negative quantity of a commodity, etc.). The classical
example here is a dam, whose reservoir may run dry – become empty – but
which cannot store a negative amount of water. Here the input process of

7



water is often modelled by a Lévy process. Now consider a queue – for sim-
plicity, a single-server queue. The server is initially idle (say). This idle
period ends when the first customer arrives for service; the server then works
non-stop to serve him, and continues in the same way with any customers
who arrive during this busy period, and so on. The analogue of the content
of the dam (or storage model) is the workload facing the server – alterna-
tively, from the customer’s point of view, the virtual waiting time – the time
a customer arriving at time t would have to wait to begin service (a.s. no
customer does arrive at any given t – but busy facilities such as restaurants,
exhibitions etc. often post how long one would have to wait if one did).
Random walks.

The subject lurking in the background here is that of random walks –
sums Sn = X1 + · · · + Xn of iid random variables. These have an extensive
and interesting fluctuation theory, developed in the 1950s by Spitzer, Baxter,
Sparre Andersen and others.
Duality.

The link between ruin problems and queues etc. lies in duality for random
walks. In brief, this involves reversing both time and space – looking at the
steps of a random walk backwards in time and ‘upside down’ (see e.g. [Kyp,
3.2]). One can often then transfer from one of the above problem areas to
another. This is the most efficient, attractive and modern way to handle the
material. Before, results that are now handled easily by duality as above
had to be discovered at least twice, and it to be noticed that the relevant
distributions were the same. Duality enables one to proceed ‘pathwise’ – by
looking at the random quantities themselves, not just their distributions.

In the ruin problem here, the Net Profit Condition means: to avoid ruin,
‘more money in than out’. In queues, this corresponds to the stability condi-
tion: the server can handle work faster than it comes in (mean service time
less than mean inter-arrival time – without this, the server is overwhelmed
and the queue ‘blows up’). For such a stable queue, the workload (or virtual
waiting time) has a limit distribution as time increases – the queue settles
down to a steady state. The most important case is the M/G/1 queue (M :
Markov arrival process – Poisson; G: general service-time distribution; 1:
single server). Here the limiting waiting-time distribution is given by the
classical Pollaczek-Khintchine formula. This corresponds to our main result
above, the Cramér estimate of ruin. For background and details, see [Kyp,
1.3.1, 1.3.2].
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Stochastic calculus for jump processes
In Ch. V we developed stochastic (Itô) calculus based on Brownian mo-

tion, and applied it in Ch. VI to mathematical finance (Black-Scholes the-
ory). It turns out that this calculus can be extended to the processes with
jumps relevant here in Ch. VII on insurance, where the jumps represent the
claims. This is technically easier (at least for the Poisson process), but ac-
tually came later. It was developed in the context of queueing theory, where
the jumps represent customers arriving (or departing). For details, see e.g.
D. Applebaum, Lévy processes and stochastic calculus, 2nd ed., CUP, 2009
P. Brémaud, Point processes and queues: martingale dynamics, Springer,
1981.

Recall that the essence of Brownian-based stochastic calculus is captured
in the simple equation

(dBt)
2 = dt.

The essence of Poisson-based stochastic calculus is similarly captured in

(dNt)
2 = dNt.

For, the change dNt in a Poisson process N = (Nt) at time t is 0 or
1, and the above expresses that these are the only roots of x2 = x, i.e.
x2 − x = x(x− 1) = 0.

The context of Lévy processes in [App] is the simplest natural one con-
taining both the Brownian and the Poisson/compound Poisson cases. But
the natural context for stochastic integration is (a lot) more general still –
that of semi-martingales. These are processes expressible as the sum of a
local martingale and a process of (locally) finite variation (FV). The theory
here was developed by Paul-André Meyer (1934-2003) and the French (Stras-
bourg, Paris) school – the ‘general theory of processes’.

9. More on insurance.

Non-life insurance: regression and covariates
House insurance

If one insures a house’s contents, one of the the principal risk factors the
insurance company will consider (and the easiest one to measure) is the risk
of burglary. This varies greatly according to the nature of the area: affluent
areas have more to attract a burglar, but tend to have better burglar alarms;
poorer areas tend to have higher crime rates, etc. If one insures a house
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as a building, the principal risk factor is subsidence. This depends largely
on the geological conditions in the area (and so are indicated by the postal
code), but also on the quality of the building at the time the area was de-
veloped (which can be assessed from past claims). Risk of fire is important
in both, but harder to assess (it depends on people not leaving chip-pans on
the cooker when called to the door or the phone, etc.). These subsidiary bits
of information are called covariates; the way to use them is called regression.
The areas of statistics involved are very useful in the actuarial/insurance
profession.

Motor insurance
Motor insurance rates vary widely. Of course, the most important single

thing is the claims record of the insuring motorist – a good record is worth
money, in a no-claims bonus. But, the type of car is also relevant (sports
cars are penalised); so is the type of driver (young men are penalised), the
annual mileage, the type of use (private or for hire), etc.

Life insurance
Eventual death is certain, so life insurance is largely a matter of covariates

such as: age, sex, medical record, profession etc. The tools involved come
under Survival Analysis: hazard rates, etc. Following the introduction of the
proportional hazards model by Cox in 1972, martingale methods have been
widely used. This is a very interesting and useful area, but not one we can
pursue further here.

To give some flavour of Survival Analysis: suppose that a person survives
for time t. What is the chance that he dies by time t + dt? With T as the
lifetime, with distribution function F on (0,∞), density f and tail F (x) =
1− F (x), this is

P (T ≤ x+ dx|T > x) = P (x < T ≤ x+ dx)/P (T > x)

= (F (x+ dx)− F (x))/(1− F (x))

∼ f(x)dx/(1− F (x))

= h(x)dx,

say, where h(x) has the interpretation of a hazard rate. So

h(x) = f(x)/(1− F (x)).
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Integrating,

1− F (x) = exp{
∫ x

0

h(u)du} : F (x) = 1− exp{
∫ x

0

h(u)du}.

The simplest case is constant hazard rate, λ say, leading to the exponential
distribution E(λ), and so to the Poisson process Ppp(λ) of VII.2:

h(x) ≡ λ, F (x) = 1− e−λx, (x > 0) : F = E(λ).

Now hazard rates vary according to many factors, or covariates: age (older
people die out faster than younger ones); medical history; weight, smoking
status, occupation, marital status (married people live longer!), etc. So appli-
cants for life insurance will be asked to fill out a form detailing the covariates
the insurance company deems relevant; assessing the premium depending on
these covariates involves regression, as with the non-life examples above.

Reinsurance
Reinsurers play a major role, in the modern economy, beyond insuring

insurers. Reinsurance companies act as de facto regulators: they monitor in-
surers and put a price on their heads. The government need have no say, as
‘it’s money that talks here’. A good reinsurance premium implies confidence,
and makes it easier for the primary insurer to raise capital on the open mar-
ket. Insurers hold, to cover losses, a mix of cash reserve, investment reserve
and reinsurance. (It used to be that the reinsurance pot was biggest, but
that is changing as investment becomes more affordable.) The basic fact is
that the balance of the three sources of capital is important, and precarious:
the reinsurance company watches the cash position of the client like a hawk.

Lender of last resort
Companies may fail, and disappear (leaving debts behind them, as well

as lost jobs, etc.). But countries cannot disappear (even though sovereign
states have on occasion defaulted on debt, split up, etc.). The ultimate un-
derpinning (in so far as there is one) here is provided by the state, in the
form of the central bank – the Bank of England (BoE) in the UK, the Fed-
eral Reserve Bank (Fed) in the USA, the European Central Bank (ECB) in
the EU, and indeed the World Bank at UN level. The phrase ‘lender of last
resort’ is used to convey this.
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Postscript to Ch. VII, Insurance Mathematics

As noted in VII.1, the actuarial profession regulates itself carefully. The
Institute of Actuaries sets professional exams, which intending actuaries must
pass in order to become qualified. In order to earn exemption by passing a
course at university, the university course (particularly its syllabus) must be
accredited (validated) by the Institute. (The situation is similar in the ac-
countancy profession.)

The two main centres for actuarial work in the UK are London and Ed-
inburgh. In London, the City University was an early centre, followed later
by the London School of Economics (LSE). The LSE’s Risk and Stochastics
MSc has now become a major producer of actuaries. In Edinburgh, a similar
role has long been played by Heriot-Watt University.

As a glance at the skyline in the City of London reveals, London is a
major world financial centre. The financial services industry is one of the
UK’s major industries (thirty years ago manufacturing industry predomi-
nated – recall that the UK pioneered the Industrial Revolution – but this
is no longer so). Most of the leading UK Mathematics Departments have
MSc programmes in Financial Mathematics. I think it is fair to say that
UK academia provides well for the needs of the financial services industry.
I think it is also fair to say that it provides less well for the needs of the
actuarial profession and the insurance industry. This is a great pity (recall
from VII.1 the UK’s historic leading role here).

I am very pleased that Insurance Mathematics is included in the syllabus
for this course. I would urge anyone taking this course who does not already
have a clear career path mapped out ahead of them to consider actuarial
work (which I would probably have gone into myself had I not been sucked
into academia). The work is very useful, and very interesting.

It is worth noting that the boundary between the mathematics of finance
(Ch. I-VI) and insurance (Ch. VII) has become quite blurred in recent years.
This is partly because, following the Crash of 2008 and a number of major
defaults, default in finance is seen as analogous to death in life insurance or
a claim in non-life insurance. The two areas are no longer separate, as they
once were, and the trend towards further interaction will no doubt continue.
So it does not have to be an ‘either or’ choice for you!

NHB
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