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Options (continued).
Because the value of an option at expiry is so sensitive to price – it reflects

movements in the price of the underlying in exaggerated form – the holding
(or more generally, trading) of options and other derivatives presents greater
opportunities for profit (and indeed, for loss) than trade in the underlying
(this is why speculators buy options!). They are correspondingly more risky
than the underlying.

One of the main insights of the fundamental work of Black and Scholes
was that one can (at least in the most basic model) hedge against meeting
a contingent claim by replicating it: constructing a portfolio, adjusted or re-
balanced as time unfolds and new price information comes in, whose pay-off
is the amount of the contingent claim.
6. Arbitrage.

Economic agents go to the market for various reasons. One the one hand,
companies may wish to insure, or hedge, against adverse price movements
that might affect their core business. On the other hand, speculators may
be uninterested in the specific economic background, but only interested in
making a profit from some financial transaction. The relation between hedg-
ing (‘good’) and speculation (‘bad’) is to some extent symbiotic (one cannot
lay off a risk unless someone else is prepared to take it on, and why should he
unless he expects to make money by doing so). Nevertheless, one feels that it
should not be possible to extract money from the market without genuinely
engaging in it, by taking risk: all business activity is risky. Indeed, were it
possible to do so, people would do so – in unlimited quantities, thus sucking
money parasitically out of the market, using it as a ‘money-pump’. This
would undermine the stability and viability of the market in the long run –
and in particular, make it impossible for the market to be in equilibrium.

The usual theoretical view of modelling markets as NA is not so much
that arbitrage opportunities do not exist, but rather that if they do exist in
any sizeable quantity, people will rush to exploit them, and by doing so will
dissipate them – ‘arbitrage them away’.

Used in this broad sense, the term covers financial activity of many kinds,
including trade in options, futures and foreign exchange. However, the term
arbitrage is nowadays also used in a narrower and more technical sense. Fi-
nancial markets involve both riskless (bank account) and risky (stocks, etc.)
assets. To the investor, the only point of exposing oneself to risk is the oppor-
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tunity, or possibility, of realising a greater profit than the riskless procedure of
putting all one’s money in the bank (the mathematics of which – compound
interest – does not require a degree or MSc course!). Generally speaking,
the greater the risk, the greater the return required to make investment an
attractive enough prospect to attract funds. Thus, for instance, a clearing
bank lends to companies at higher rates than it pays to its account holders.
The companies’ trading activities involve risk; the bank tries to spread the
risk over a range of different loans, and makes its money on the difference
between high/risky and low/riskless interest rates.

It is usually better to work, not in face-value or nominal terms, but in
discounted terms, allowing for the exponential growth-rate ert of risklessly
invested money. So, profit and loss are generally reckoned against this dis-
counted benchmark.

The above makes it clear that a market with arbitrage opportunities
would be a disorderly market – too disorderly to model. The remarkable
thing is the converse. It turns out that the minimal requirement of absence
of arbitrage opportunities is enough to allow one to build a model of a fi-
nancial market which – while admittedly idealised (frictionless market – no
transaction costs, etc.) – is realistic enough both to provide real insight
and to handle the mathematics necessary to price standard options (Black-
Scholes theory). We shall see that arbitrage arguments suffice to determine
prices – the arbitrage pricing technique (APT).
Short-selling.

First, consider a riskless asset (bank account), with interest-rate r > 0. If
our bank deposit is positive, we lend money and earn interest at rate r. If our
bank deposit is negative (overdraft), we borrow money and pay interest. [We
assume for simplicity that we pay interest also at rate r, though in practice
of course it will be at some higher rate r′ > r. Models taking these different
interest-rates into account are topical at research level; we omit them here –
see VI.5].

In many markets, risky assets such as stocks may be treated in the same
way. We may have a positive or zero holding – or a negative holding (no-
tionally borrowing stock, which we will be obliged to repay – or repay its
current value). In particular, we may be allowed to sell stock we do not
own. This is called short-selling, and is perfectly legal (subject to appropri-
ate regulation) in many markets. Think of short-selling as borrowing. Not
only is short-selling both routine and necessary in some contexts, such as
foreign exchange and commodities futures, it simplifies the mathematics. So
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we assume, unless otherwise specified, no restriction on short-selling. By ex-
tension, we call a portfolio, or position, short in an asset if the holding of the
asset is negative, long if the holding of the asset is positive.
Note. It turns out that in some important contexts – such as the Black-
Scholes theory of European and American calls – short-selling can be avoided.
In such cases, it is natural and sensible to do so: see Ch. VI.

7. Put-Call Parity.
Just as long and short positions are diametrical opposites, so are call and

put options. We now use arbitrage to show how they are linked.
Suppose there is a risky asset, value S (or St at time t), with European

call and put options on it, value C,P (or Ct, Pt), with expiry time T and
strike-price K. Consider a portfolio which is long one asset, long one put
and short one call; write Π (or Πt) for the value of this portfolio. So

Π = S + P − C (S: long asset; P : long put; −C: short call).

Recall that the payoffs at expiry are:{
call C: max(S −K, 0), or (S −K)+,
put P : max(K − S, 0), or (K − S)+.

So the value of the above portfolio at expiry is{
S + 0− (S −K) = K if S ≥ K,
S + (K − S)− 0 = K if K ≥ S,

namely K (see Problems 1b Q1 for the quicker way to do this). This portfolio
thus guarantees a payoff K at time T . How much is it worth at time t?

Short answer (correct, and complete): Ke−r(T−t), because it is financially
equivalent to cash K, so has the same time-t value as cash K.

Longer answer (included as an example of arbitrage arguments). The
riskless way to guarantee a payoff K at time T is to deposit Ke−r(T−t) in the
bank at time t and do nothing. If the portfolio is offered for sale at time t
too cheaply – at a price Π < Ke−r(T−t) – I can buy it, borrow Ke−r(T−t) from
the bank, and pocket a positive profit Ke−r(T−t) − Π > 0. At time T my
portfolio yields K (above), while my bank debt has grown to K. I clear my
cash account – use the one to pay off the other – thus locking in my earlier
profit, which is riskless. If on the other hand the portfolio is offered for sale
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at time t at too high a price – at price Π > Ke−r(T−t) – I can do the exact
opposite. I sell the portfolio (short) – that is, I buy its negative, long one call,
short one put, short one asset, for −Π, and invest Ke−r(T−t) in the bank,
pocketing a positive profit −(−Π)−Ke−r(T−t) = Π−Ke−r(T−t) > 0. At time
T , my bank deposit has grown to K, and I again clear my cash account –
use this to meet my obligation K on the portfolio I sold short, again locking
in my earlier riskless profit. So the rational price for the portfolio at time t
is exactly Ke−r(T−t). Any other price presents arbitrageurs with an arbitrage
opportunity (to make a riskless profit) – which they will take! Thus
(i) The price (or value) of the portfolio at time t is Ke−r(T−t), that is,

S + P − C = Ke−r(T−t).

This link between the prices of the underlying asset S and call and put op-
tions on it is called put-call parity.
(ii) The value of the portfolio S+P −C is the discounted value of the riskless
equivalent. This is a first glimpse at the central principle, or insight, of the
entire subject of option pricing. But in general, we will have ‘risk-neutral’ in
place of ‘riskless’; see I.8 below, Ch. IV and Ch. VI.
(iii) Arbitrage arguments, although apparently qualitative, have quantita-
tive conclusions, and allow one to calculate precisely the rational price – or
arbitrage price – of a portfolio. The put-call parity argument above is the
simplest example – though a typical one – of the arbitrage pricing technique.
(iv) The arbitrage pricing technique (APT) is due to S. A. Ross in 1976-78
(details in [BK], Preface). Put-call parity has a long history (see Wikipedia).
Note. 1. History shows both that arbitrage opportunities exist (or are
sought) in the real world and that the exploiting of them is a delicate matter.
The collapse of Barings Bank in 1995 (the UK’s oldest bank, and bankers
to HMQ) was triggered by unauthorised dealings by one individual, who
tried and failed to exploit a fine margin between the Singapore and Osaka
Stock Exchanges. The leadership of Barings at that time thought that he
had discovered a clever way to exploit price movements in either direction.
This is obviously impossible on theoretical grounds, to anyone who knows
any Physics. See Problems 1b Q2 (key phrases: perpetual motion machine;
Maxwell’s demon; Second Law of Thermodynamics; entropy).
2. Major finance houses have an arbitrage desk, where their arbs work.
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8. An Example: Single-Period Binary Model.
We consider the following simple example, taken from

[CRR] COX, J. C., ROSS, S. A. & RUBINSTEIN, M. (1979): Option pricing:
a simplified approach. J. Financial Economics 7, 229-263.
We shall see later that (in a sense) this captures Black-Scholes theory in
microcosm.

For definiteness, we use the language of foreign exchange. Our risky asset
will be the current price in Swiss francs (SFR) of (say) 100 US $, supposed
X0 = 150 at time 0. Consider a call option with strike price K = 150 at time
T . The simplest case is the binary model, with two outcomes: suppose the
price XT of 100 $ at time T is (in SFR)

XT =

{
180 with probability p,
90 with probability 1− p.

The payoff H of the option will be 30 = 180− 150 with probability p, 0 with
probability 1 − p, so has expectation EH = 30p. This would seem to be
the fair price for the option at t = 0, or allowing for an interest-rate r and
discounting, we get the value

V0 = E(
H

1 + r
) =

30p

1 + r
.

Take for simplicity p = 1
2

and r = 0 (no interest): the naive, or expectation,
value of the option at time 0 is

V0 = 15.

The Black-Scholes value of the option, however, is different. To derive it, we
follow the Black-Scholes prescription (Ch. IV, VI):
(i) First replace p by p∗ so that the price, properly discounted, behaves like
a fair game:

X0 = E∗(
XT

1 + r
).

That is,

150 =
1

1 + r
(p∗.180 + (1− p∗).90);

for r = 0 this gives 60 = 90p∗ or p∗ = 2/3.
(ii) Now compute the fair price of the expected value in this new model:

V0 = E∗(
H

1 + r
) =

30p∗

1 + r
;
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for r = 0 this gives the Black-Scholes value as V0 = 20.
Justification: it works! – as the arbitrage constructed below shows. For sim-
plicity, take r = 0.
We sell the option at time 0, for a price π(H), say. We then prepare for the
resulting contingent claim on us at time T by the option holder by using the
following strategy:

Sell the option for π(H) +π(H)
Buy $33.33 at the present exchange rate of 1.50 −50
Borrow SFR 30 +30
Balance π(H)− 20.

So our balance at time 0 is π(H)− 20. At time T , two cases are possible:
(i) The dollar has risen:

Option is exercised (against us) −30
Sell dollars at 1.80 +60
Repay loan −30
Balance 0.

(ii) The dollar has fallen:

Option is worthless 0.00
Sell dollars at 0.90 +30
Repay loan −30
Balance 0.

So the balance at time T is zero in both cases. The balance π(H) − 20 at
time 0 should thus also be zero, giving the Black-Scholes price π(H) = 20 as
above. For, any other price gives an arbitrage opportunity. Argue as in put-
call parity in §4: if the option is offered too cheaply, buy it; if it is offered
too dearly, write it (the equivalent for options to ‘sell it short’ for stock).
Thus any other price would offer an arbitrageur the opportunity to extract a
riskless profit, by appropriately buying and selling (Swiss francs, US dollars
and options) so as to exploit your mis-pricing.

The same argument with interest-rate r also applies: divide everything
through by 1 + r.
Note. This argument, and result, are independent of p, the ‘real’ probabil-
ity, and depend instead only on this ‘fictitious’ new probability, p∗ (which is
called the risk-neutral or risk-adjusted probability.
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The example above is highly instructive. First, it clearly represents the
simplest possible non-trivial case: only two time-points (with one time-period
between them, hence the ‘single-period’ of the title), and only two possible
outcomes (hence the ‘binary’ of the title). Secondly, it shows that there is a
theory hidden here, which gives us a definite prescription to follow (and some
surprises, such as not involving the ‘real’ probability p above). This prescrip-
tion is simple to implement, and can be justified by explicitly constructing
an arbitrage to exploit doing anything else [if the option is offered for sale
too cheaply, buy it, if too dearly, write it]. This theory is the Black-Scholes
theory, which we consider in detail in Chapters IV and VI. The technical key
to the Black-Scholes prescription is the introduction of p∗ and its associated
expectation operator E∗. In technical language, this is the equivalent mar-
tingale measure. Now each of these three terms needs full introduction. We
shall talk about measures in II.1 below, about equivalent measures in II.4,
and martingales in III.3 and V.2. We stress: the Black-Scholes theory – that
is, rational option pricing – cannot be done without all these concepts. This
is why we need Chapter II on the necessary background on measure theory,
and Chapters III and V on the necessary background on stochastic processes.

There are basically three options open to those teaching, and learning,
how to price options etc.
1. One can avoid measure theory altogether (cf. [CR]). This is technically
possible rigorously in the discrete-time setting of Ch. III – though at greater
length, because the key concepts cannot be addressed explicitly. It is also
possible in continuous time, using partial differential equations (PDEs) rather
than martingales.
2. One can learn measure theory first – say, from the excellent book [W].
This, however, puts the subject beyond the reach of most people who need
it and use it in practice – and beyond reach of most of this audience.
3. One can do as we shall do (and as [BK] does): state what we need from
measure theory, and use its language, concepts, viewpoint and results, with-
out proving anything. This makes good sense: the constructions and proofs
of measure theory are quite hard (say, final year undergraduate or first-year
postgraduate level for good mathematics students with a bent for analysis –
quite a select group!). Using measure theory taking its results for granted,
however, is quite easy, as we shall see.
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9. Complements
1. Types of risk.

Institutions encounter risks of various types. These include:
Market risk.

This is the risk that one’s current market position (the aggregate of risky
assets one holds) goes down in value (things one is long on get cheaper,
and/or things one is short on get dearer).
Credit risk.

This is the risk that counter-parties to one’s financial transactions may
default on their obligations.

When this happens, debts cannot be (or are not) paid in full. Usu-
ally, payment is made in part, by negotiation between the parties (it may
be cheaper to agree a partial repayment than to force the other party into
bankruptcy), or by the administrators or liquidators in the case of compa-
nies. This raises issues of moral hazard, below.
Operational risk.

This is risk arising from the internal procedures of an institution: failure
of computer systems for implementing transactions (the failure of the Taurus
clearing system on the London Stock Exchange was one example); fraudulent
or unauthorised trading made possible by inadequate supervision; etc.
Liquidity risk.

This is the risk that one will be unable to implement a planned or agreed
transaction because of lack of cash and/or willingness to trade. The Credit
Crunch of 2007/8 on was caused by banks realising they had piles of toxic
debt on their hands (see below), and so did not know what their balance
sheets were worth; that other banks were similarly placed; hence that banks
no longer trusted themselves or each other, and so refused to lend to each
other. So the financial system froze up; so the real economy froze up.
Model risk.

To handle real-world phenomena of any complexity, one needs to model
them mathematically. To quote Box’s Dictum: All models are wrong; some
models are useful.1 Use of an inappropriate model to set the prices at which
one buys and sells exposes the institution to open-ended losses, to competi-
tors with better models.

2. Risk management. The problems of 2007/8 on have made the importance

1George E. Box, 1919-2013, British statistician
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of risk management obvious. For an excellent book-length treatment, see e.g.
[MFE] A. J. McNEIL, R. FREY & P. EMBRECHTS: Quantitative risk man-
agement: Concepts, techniques, tools. Princeton UP, 2005.

We know from Markowitz that we should have a balanced portfolio, with
lots of negative correlation. The danger is large losses, quantified by the tails
of the joint distribution of our portfolio. We diversify so that what we lose
on the swings we gain on the roundabouts. Two comments:
(a) Whether this works for large losses depends on the tail properties of the
joint distribution. It does not work if this is normal – as it is in the bench-
mark Black-Scholes model.
(b) When the whole market is falling – as in a financial crisis – none of the
risk-management techniques useful under normal market conditions work.
3. Moral hazard. Before the limited liability company, if one defaulted, one
was liable to the whole of the loss incurred by one’s counter-party. This made
trading very dangerous (the early traders were called merchant adventurers)
– all the more as insurance had not developed by then.2

Limited liability was what made ordinary people willing to undertake the
risks of trading, and so paved the way for the development of modern busi-
ness, commerce, capitalism etc.

The moral hazard here is the possibility of gambling with other people’s
money (see Kay’s book [K2], Week 0). If it works, fine. If not, walk away
(writing off one’s limited liability) and leave them to bear the loss.

Bankruptcy law varies from country to country, and is too complicated
to pursue here. But one sees moral hazard where it concerns us in, e.g.:
(a) start-ups of hedge funds (or, dot-com companies);
(b) aggressive traders – who (for the sake of their bonuses) gamble with their
careers – but with other people’s money;
(c) credit rating – where the credit rating agencies had a financial incentive
to pass as AAA some highly questionable financial asset, etc.
4. Securitization. This term covers the drive in recent years to seek out
new financial markets by identifying risks that people might want to cover
themselves against, and creating new financial derivatives that can be sold to
address this perceived need. These derivatives too could be traded, etc. The
upshot was an explosion of trade in increasingly artificial financial products,

2Lloyds of London predates limited liability. The Lloyds participants – ”names” – had
unlimited liability. Many were driven into personal bankruptcy, and some to suicide, in
the Lloyds scandals of the 90s. See Google for the ghastly details.
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developed by the R&D departments of the financial institutions. By 2007/8
the leaders of these institutions did not understand these products – could
not price them, and could not value their holdings of them (above).

One specific trigger of the US crash in 2007 was the explosive growth
in sub-prime mortgages. These were granted to people who would not have
qualified as financially sound enough to get a mortgage previously, but who
wanted to buy their own house. This new and profitable market proved ir-
resistible to US banks – leading to a great house-price bubble, which burst
(as bubbles do) in 2007. The knock-on effects hit the UK in 2008 (Northern
Rock, etc.). The real damage of this failure of the financial sector has been
its devastating and ongoing consequences on the real economy.
5. Macro-prudential issues. As the above illustrates, financial matters are
too important to be left to financiers. Proper regulation is vital.
6. Forwards and futures. Forwards are agreements between buyer and seller
made now, but concerning delivery in the future. They are not traded. Fu-
tures are options on things that will come to market in the future (next year’s
grain crop, for example), and these are traded (extensively). There are good
accounts in Hull’s books, [H1], [H2].
7. OTC and exchange-traded contracts. OTC – ”over-the-counter” – denotes
a transaction made between an individual buyer and an individual seller. As
options on standard transactions develop, these are assets themselves that
can be traded in exchanges (e.g., the CBOE, which opened in 1973: I.3).
8. Marking to market. This is a system whereby the exchanges cover them-
selves and their clients against the risk of large losses. If one party to a trade
is, on current market prices, exposed to a potentially heavy loss, a margin
call will be required by the exchange. It is margin calls that actually trigger
many financial failures (but limit the losses of the counter-parties)3.
9. Forex (FX). Forex is an abbreviation for foreign exchange. International
trade involves more than one currency, and currencies move against each
other. There is a vast market in derivatives to cover the risks involved.
10. Swaps. From Hull [H2] Ch. 5: ”Swaps are private agreements between
two companies to exchange cash flows in the future ... The first swap con-
tracts were negotiated in 1981. Since then the market has grown very rapidly.
...” There are even options on swaps – swaptions – etc.

3The 2011 film Margin Call, starring Kevin Spacey, is about a finance house about to
collapse in this way.
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Prelude to Ch. II: Integration and area (cf. PfS Lecture 1, SP L1)

We shall mainly deal with area, as this is two-dimensional. We can
draw pictures in two dimensions, and our senses respond to this; paper,
whiteboards and computer screens are two-dimensional. By contrast, one-
dimensional pictures are much less vivid, while three-dimensional ones are
harder (‘statues rather than pictures’) – and dimensions higher than four are
harder still.
Area.
1. Rectangles, base b, height h: area A := bh.
2. Triangles. A = 1

2
bh.

Proof: Drop a perpendicular from vertex to base; then extend each of the
two triangles formed to a rectangle and use 1. above.
3. Polygons. Triangulate: choose a point in the interior; connect it to the
vertices. This reduces A to the sum of areas of triangles; use 2. above.
4. Circles. We have a choice:
(a) Without calculus. Decompose the circle into a large number of equi-
angular sectors. Each is approximately a triangle; use 2. above [the approx-
imation boils down to sin θ ∼ θ for θ small].
(b) With calculus and plane polar coordinates. Use dA = dr.rdθ = rdrdθ:
A =

∫ r
0

∫ 2π
0 rdrdθ =

∫ r
0 rdr.

∫ 2π
0 dθ = 1

2
r2.2π = πr2.

Note. The ancient Greeks essentially knew integral calculus – they could do
this, and harder similar calculations [volume of a sphere V = 4

3
πr3; surface

area of a sphere S = 4πr2dr, etc.; note dV = Sdr].
What the ancient Greeks did not have is differential calculus [which we all

learned first!] Had they had this, they would have had the idea of velocity,
and differentiating again, acceleration. With this, they might well have got
Newton’s Law of Motion, Force = mass × acceleration. This triggered the
Scientific Revolution. Had this happened in antiquity, the world would have
been spared the Dark Ages and world history would have been completely
different!
5. Ellipses, semi-axes a, b. Area A = πab (w.l.o.g., a > b).
Proof: cartesian coordinates: dA = dx.dy.
Reduce to the circle case: compress [‘squash’] the x-axis in the ratio b/a [so
dx 7→ dx.b/a, dA 7→ dA.b/a]. Now the area is A = πb2, by 4. above. Now ‘un-
squash’: dilate the x-axis in the ration a/b. So A 7→ A.a/b = πb2.a/b = πab.

Fine – what next? We have already used both the coordinate systems to
hand. There is no general way to continue this list.
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The only general procedure is to superimpose finer and finer sheets of
graph paper on our region, and count squares (‘interior squares’ and ‘edge
squares’). This yields numerical approximations – which is all we can hope
for, and all we need, in general.

The question is whether this procedure always works. Where it is clearly
most likely to fail is with highly irregular regions: ‘all edge and no middle’.

It turns out that this procedure does not always work; it works for some
but not all sets – those whose structure is ‘nice enough’4. This goes back to
the 1902 thesis of Henri LEBESGUE (1875-1941):
H. Lebesgue: Intégrale, longueur, aire. Annali di Mat. 7 (1902), 231-259.
Similarly in other dimensions. So: some but not all sets have a length/area/volume.
Those which do are called (Lebesgue) measurable; length/area/volume is
called (Lebesgue) measure; this subject is called Measure Theory.

We first meet integration in just this context – finding areas under curves
(say). The ‘Sixth Form integral’ proceeds by dividing up the range of inte-
gration on the x-axis into a large number of small subintervals, [x, x + dx]
say. This divides the required area up into a large number of thin strips, each
of which is approximately rectangular; we sum the areas of these rectangles
to approximate the area.

This informal procedure can be formalised, as the Riemann integral (G.
F. B. RIEMANN (1826-66) in 1854). This (basically, the Sixth From integral
formalised in the language of epsilons and deltas) is part of the undergradu-
ate Mathematics curriculum.

We see here the essence of calculus (the most powerful single weapon in
mathematics, and indeed in science). If something is reasonably smooth, and
we break it up finely enough, curves look straight, so we can handle them.
We make an error by this approximation, but when calculus applies, this er-
ror can be made arbitrarily small, so the approximation is effectively exact.
Example: We do this sort of thing automatically. If in a discussion of global
warming we hear an estimate of polar ice lost, this will translate into an
estimate of increase in sea level (neglecting the earth’s curvature).
Note. The ‘squashing’ argument above was deliberately presented informally.
It can be made quite precise – but this needs the mathematics of Haar mea-
sure, a fusion of Measure Theory and Topological Groups.

4The existence of non-measurable sets is bound up with the axioms of Set Theory. We
assume the Axiom of Choice (AC) – E. Zermelo, 1904.
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