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2. Dependence of the Black-Scholes price on the parameters.
Recall the Black-Scholes formulae for the values ct, pt for the European

call and put: with

d± := [log(St/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t,

ct = StΦ(d+)−Ke−r(T−t)Φ(d−), pt = Ke−r(T−t)Φ(−d−)− StΦ(−d+),

1. S. As the stock price S increases, the call option becomes more and more
likely to be exercised. In the limit for large S, d± → ∞, Φ(d±) → 1, so
ct ∼ St −Ke−r(T−t). This limit has a natural economic interpretation: it is
the value of a forward contract with delivery price K (see e.g. Hull [H1] Ch.
3, [H2] Ch. 3).
2. σ. When the volatility σ → 0, the stock becomes riskless, and behaves
like money in the bank. Again, d± → ∞, the Black-Scholes price has the
limit above, and one has the correct economic interpretation.
3. Volatility.

As in IV.6.6 Week 3b, the volatility σ can be estimated in two ways:
a. Directly from the movement of a stock price in time [as the mathematics
here is continuous time, we defer it to Ch. VI], giving what is called the
historic volatility.
b. From the observed market prices of options: if we know everything in
the Black-Scholes formula (including the price at which the option is traded)
except the volatility σ, we can solve for σ. This is called implied volatility.
Since σ appears inside the argument of the normal distribution function Φ as
well as outside, this is a transcendental equation for σ and has to be solved
numerically by iteration (Newton-Raphson method). We quote (see ‘The
Greeks’ below, and Problems 4a) that the Black-Scholes price is a monotone
(increasing) function of the volatility (more volatility doesn’t make us ‘more
likely to win’, but when we do win, we ‘win bigger’), giving a unique root.

In practice, one sees discrepancies between historic and implied volatility,
which show limitations to the accuracy of the Black-Scholes model. But it is
the standard ‘benchmark model’, and useful as a first approximation.

The classical view of volatility is that it is caused by future uncertainty,
and shows the market’s reaction to the stream of new information. How-
ever, studies taking into account periods when the markets are open and
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closed [there are only about 250 trading days in the year] have shown that
the volatility is less when markets are closed than when they are open. This
suggests that trading itself is one of the main causes of volatility.
Note. This observation has deep implications for the macro-prudential and
regulatory issues discussed in Ch. 1. The real economy cannot afford too
much volatility. Volatility is (at least partly) caused by trading. Conclusion:
there is too much trading. Policy question: how can we reduce the volume
of trading (much of it speculative, designed to enrich traders, and not serv-
ing a more widely useful economic purpose)? One answer is the so-called
Tobin tax (also known as the ”Robin Hood tax”) (James Tobin (1918-2002),
American economist; Nobel Prize for Economics, 1981). This would levy
a small charge (e.g. 0.01%) on all financial transactions. This would both
provide a major and useful source of tax revenue, and – more importantly –
would discourage a lot of speculative trading, thereby (shrinking the size of
the financial services industry, but) diminishing volatility, to the benefit of
the general economy (Problems 4a again).
4. The Greeks.

These are the partial derivatives of the option price with respect to the
input parameters. They have the interpretation of sensitivities.
(i) For a call, say, ∂c/∂S is called the delta, ∆. Adjusting our holdings of
stock to eliminate our portfolio’s dependence on S is called delta-hedging.
(ii) Second-order effects involve gamma := ∂(∆)/∂S = ∂2σ/∂S2.
(iii) Time-dependence is given by Theta, Θ := ∂c/∂t.
(iv) Volatility dependence is given by vega := ∂c/∂σ.1

From the Black-Scholes formula (which gives the price explicitly as a
function of σ), one can check by calculus (Problems 4a) that

∂c/∂σ > 0,

and similarly for puts (or, use the result for calls and put-call parity). In sum:
options like volatility. This fits our intuition. The more uncertain things are
(the higher the volatility), the more valuable protection against adversity –
or insurance against it – becomes (the higher the option price).
(v) rho is ∂c/∂r, the sensitivity to interest rates.

1Of course, vega is not a letter of the Greek alphabet! (it is the Spanish word for
‘meadow’, as in Las Vegas) – presumably so named for ”v for volatility, variance and
vega”, and because vega sounds quite like beta, etc.
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§8. American Options.

We now consider an American call option (value C), in the simplest case
of a stock paying no dividends.

Theorem (Merton’s theorem: R. C. Merton, 1973). It is never optimal
to exercise an American call option early. That is, the American call option
is equivalent to the European call, so has the same value:

C = c.

First Proof. Consider the following two portfolios:
I: one American call option plus cash Ke−rT ; II: one share.
The value of the cash in I is K at time T , Ke−r(T−t) at time t. If the call
option is exercised early at t < T , the value of Portfolio I is then St−K from
the call, Ke−r(T−t) from the cash, total

St −K +Ke−r(T−t).

Since r > 0 and t < T , this is < St, the value of Portfolio II at t. So Portfolio
I is always worth less than Portfolio II if exercised early.

If however the option is exercised instead at expiry, T , the American call
option is then the same as a European call option. Then at time T , Portfolio
I is worth max(ST −K, 0) +K = max(ST , K) and Portfolio II is worth ST –
always ≤ max(ST , K), and < sometimes. So:

before T, I < II,
at T, I ≥ II always, and > sometimes.

So, don’t exercise early: early exercise is never optimal. //
Second Proof. One can prove the result by using the bounds of IV.7.1. For
details, see e.g. [BK, Th. 4.7.1].

Financial Interpretation.
There are two reasons why an American call should not be exercised early:

1. Insurance. Consider an investor choosing to hold a call option instead of
the underlying stock. He does not care if the share price falls below the strike
price (as he can then just discard his option) – but if he held the stock, he
would. Thus the option insures the investor against such a fall in stock price,
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and if he exercises early, he loses this insurance.
2. Interest on the strike price. When the holder exercises the option, he
buys the stock and pays the strike price, K. Early exercise at t < T loses the
interest on K between times t and T : the later he pays out K, the better.
Economic Note.

Despite Merton’s theorem, and the interpretation above, there are plenty
of real-life situations where early exercise of an American call might be sen-
sible, and indeed is done routinely. Consider, for example, a manufacturer
of electrical goods, in bulk. He needs a regular supply of large amounts of
copper. The danger is future price increases; the obvious precaution is to
hedge against this by buying call options. If the expiry is a year but cop-
per stocks are running low after six months, he would exercise his American
call early, to keep an adequate inventory of copper, his crucial raw material.
This ensures that his main business activity – manufacturing – can continue
unobstructed. Neither of the reasons above applies here:
Insurance. He doesn’t care if the price of copper falls: he isn’t going to sell
his copper stocks, but use them.
Interest. He doesn’t care about losing interest on cash over the remaining six
months. He is in manufacturing to use his money to make things, and then
sell them, rather than put it in the bank.

This neatly illustrates the contrast between finance (money, options etc.)
and economics (the real economy – goods and services).

Put-Call Symmetry.
The BS formulae for puts and calls resemble each other, with stock price

S and discounted strike K interchanged. Results of this type are called put-
call symmetry.

American Puts.
Recall the put-call parity of Ch. I (valid only for European options):

c− p = S −Ke−rT .

A partial analogue for American options is given by the inequalities below:

S −K < C − P < S −Ke−rT .

For proof (as above) and background, see e.g. Ch. 8 (p. 216) of [H1].
We now consider how to evaluate an American put option, European
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and American call options having been treated already. First, we will need
to work in discrete time. We do this by dividing the time-interval [0, T ]
into N equal subintervals of length ∆t say. Next, we take the values of the
underlying stock to be discrete: we use the binomial model of IV.5, with a
slight change of notation: we write u, d (‘up’, ‘down’) for (1 + b), (1 + a):
thus stock with initial value S is worth Suidj after i steps up and j steps
down. Consequently, after N steps, there are N + 1 possible prices, SuidN−i

(i = 0, · · · , N). It is convenient to display the possible paths followed by the
stock price as a binomial tree [draw a diagram], with time going left to right
and two paths, up and down, leaving each node in the tree, until we reach
the N + 1 terminal nodes at expiry. There are 2N possible paths through the
tree. It is common to take N of the order of 30, for two reasons:
(i) typical lengths of time to expiry are measured in months (9 months, say);
this gives a time-step around the corresponding number of days,
(ii) 230 paths is about the order of magnitude that can be easily handled by
computers (recall that 210 = 1, 024, so 230 is somewhat over a billion).

We now return to our treatment of the binomial model in IV.5,6, with a
slight change of notation. Recall that in IV.5 (discrete time) we used 1+r for
the discount factor. It is convenient to call this 1+ρ instead, freeing r for its
usual use as the short rate of interest in continuous time. Thus 1 + ρ = er∆t,
and the risk-neutrality condition p∗ = (b− r)/(b− a) of IV.5 becomes

p∗ = (u− er∆t)/(u− d). (∗)

Now recall (IV.7) (1+a)/(1+r) = exp(−σ/
√
N), (1+b)/(1+r) = exp(σ/

√
N).

We replaced σ2 by σ2T (to make σ the volatility per unit time), and T =
N.∆t, so σ/

√
N becomes σ

√
T/
√
N = σ

√
∆t. So now

u/er∆t = eσ/
√

∆t, d/er∆t = e−σ
√

∆t.

Thus ud = e2r∆t. Since
√

∆t is small, its square ∆t is a second-order term;
to first order, we thus have ud = 1, which simplifies filling in the terminal
values in the binary tree.

With an eye on this simplification, we begin again: define our up and
down factors u, d so that

ud = 1;

define the risk-neutral probability p∗ so as to have (∗) above (to get the
mean return from the risky stock the same as that from the riskless bank
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account), and the volatility σ to get the variance of the stock price S ′ after
one time-step when it is worth S initially as S2σ2∆t:

S2σ2∆t = p∗S2u2 + (1− p∗)S2d2 − S2[p∗u+ (1− p∗)d]2

(using varS ′ = E(S ′2)− [ES ′]2). Then to first order in
√

∆t (which is all the
accuracy we shall need), one can check that we have as before

u = exp(σ
√

∆t), d = exp(−σ
√

∆t).

We can now calculate both the value of an American put option and
the optimal exercise strategy by working backwards through the tree (this
method of backward recursion in time is a form of the Dynamic Programming
[DP] technique (Richard Bellman (1920-84) in 1953, book, 1957), which is
important in many areas of optimization and Operational Research (OR)).
1. Draw a binary tree showing the initial stock value and having the right
number, N , of time-intervals.
2. Fill in the stock prices: after one time interval, these are Su (upper) and
Sd (lower); after two time-intervals, Su2, S and Sd2 = S/u2; after i time-
intervals, these are Sujdi−j = Su2j−i at the node with j ‘up’ steps and i− j
‘down’ steps (the ‘(i, j)’ node).
3. Using the strike price K and the prices at the terminal nodes, fill in the
payoffs (fN,j = max[K − SujdN−j, 0]) from the option at the terminal nodes
(where, at expiry, the values of the European and American options coincide)
underneath the terminal prices.
4. Fill in the European values, corresponding to continuation (ignoring early
exercise). We do this by backward recursion. Start from the terminal nodes
(where the value is the payoff). By Risk-Neutral Valuation (IV.4, Week 3b),
the value at the penultimate nodes is the discounted P ∗-average of the upper
and lower right (terminal) neighbouring values – ‘p∗ times lower right plus
1− p∗ times upper right’. Then use these to fill in the European values one
time-step earlier similarly, and so on, down to the root (initial) node.
5. Fill in the early-exercise values (from current price and strike K).
6. Fill in the Amerian values as the higher of these two. This gives (a)
the value at time 0 as the value at the root; (b) the continuation and early-
exercise regions (use colour coding if working by hand!).
Note. The above procedure is simple to describe and understand, and simple
to programme. It is laborious to implement numerically by hand, on exam-
ples big enough to be non-trivial. Numerical examples are worked through
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in detail in [H1], 359-360 and [CR], 241-242.
Mathematically, the task remains of describing the continuation region –

the part of the tree where early exercise is not optimal. This is a classical
optimal stopping problem. No explicit solution is known (and presumably
there isn’t one). We will, however, connect the work above with that of III.7
[Week 3a] on the Snell envelope. Consider the pricing of an American put,
strike price K, expiry N , in discrete time, with discount factor 1 + r per unit
time as earlier. Let Z = (Zn)Nn=0 be the payoff on exercising at time n. We
want to price Zn, by Un say (to conform to our earlier notation), so as to
avoid arbitrage; again, we work backwards in time. The recursive step is

Un−1 = max(Zn−1,
1

1 + r
E∗[Un|Fn−1]),

the first alternative on the right corresponding to early exercise, the second
to the discounted expectation under P ∗, as usual. Let Ũn = Un/(1 + r)n be
the discounted price of the American option. Then

Ũn−1 = max(Z̃n−1, E
∗[Ũn|Fn−1]) :

(Ũn) is the Snell envelope (III.7) of the discounted payoff process (Z̃n), so:
(i) a P ∗-supermartingale,
(ii) the smallest supermartingale dominating (Z̃n),
(iii) the solution of the optimal stopping problem for Z̃.
P -measure and P ∗− (or Q−) measure.

We use P and P ∗ in the above, as E and E∗ are convenient, but P and
Q when the emphasis is on Q, for brevity.

The measure P , the real (or real-world) probability measure, models the
uncertainty driving prices, which are indeed uncertain, thus allowing us to
bring mathematics to bear on financial problems. But P is difficult to get
at directly. By contrast, Q is more accessible: the market tells us about Q,
or more specifically, trading does. In addition, trading also tells us about
the volatility σ, via implied volatility, which we can infer from observing the
prices at which options are traded. So Q is certainly more accessible than P .
There is thus a sense in which it is Q, rather than P , which is the more real.

It is as well to bear all this in mind when looking at specific problems, par-
ticularly numerical ones. Now that we know the CRR binomial-tree model,
which gives us the Black-Scholes formula (in discrete time, and by the lim-
iting argument above, in continuous time), the main result of the course, we
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can recognise the ‘one-period, up or down’ model ($/SFr in I.8, 1b, price
of gold in Problems 3a), though clearly artificial and stylised, as a workable
‘building block’ of the whole theory. Because P itself does not occur in the
Black-Scholes formula(e), from a purely financial point of view there is little
need to try to construct more realistic, and so more complicated, models of
P . Instead, one can exploit what one can infer about Q, which does occur
in Black-Scholes, from seeing the prices at which options trade.

From the economic point of view, it is the real world, the real economy,
and so the real probability measure P , that matters. The ‘Q-measure-eye
view of the world’ has a degree of artificiality, in so far as options do. One
can eat food, and needs to. One can’t eat options.

A fuller discussion of Q-measure involves Arrow-Debreu prices, equilibria
etc., but we omit this for lack of time.
Where we are.

The course splits neatly into four parts: Ch. I, II on background, Ch. III,
IV on discrete time, Ch. V, VI on continuous time and Ch. VII on insurance.
We have already seen the main ideas – and proved nearly everything seen
so far. In V, VI we gain the tremendous power of Itô (stochastic) calculus
(calculus is our most powerful weapon, in mathematics and science!), and
the ability to work in continuous time. What we lose is the ability to prove
so much and to see what is happening so clearly and so concretely.
Time.

Is time discrete or continuous? It is both (or from the above we have
wasted two chapters!). If we work in discrete time we “have a digital watch”.
If we work in continuous time, we “have a watch with a sweep second hand”.
Continuous time is harder, but we can then use calculus, as above. We need
both: continuous time for calculus and limits, discrete time for computation,
as computers are digital.

Chapter V. STOCHASTIC PROCESSES IN CONTINUOUS TIME

§1. Filtrations; Finite-Dimensional Distributions

The underlying set-up is as before, but now time is continuous rather
than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
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(filtered probability space) on which we work.
We assume that the filtration is complete (contains all subsets of null-sets

as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs
(Meyer’s ‘usual conditions’ – right-continuity and completeness).

A stochastic process X = (Xt)t≥0 is a family of random variables defined
on a filtered probability space with Xt Ft-measurable for each t: thus Xt is
known when Ft is known, at time t.

If {t1, · · · , tn} is a finite time-set in [0,∞), (Xt1 , · · · , Xtn), or (X(t1), · · · , X(tn))
(for typographical convenience, we use both notations interchangeably, with
or without ω: Xt(ω), or X(t, ω)) is a random n-vector, with a distribution,
µ(t1, · · · , tn) say. The class of all such distributions as {t1, · · · , tn} ranges
over all finite subsets of [0,∞) is called the class of all finite-dimensional
distributions of X. These satisfy two obvious consistency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of µ(t1, · · · , tn) on Rn.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the DANIELL-KOLMOGOROV Theorem: P. J. Daniell in
1918, A. N. Kolmogorov in 1933).

Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t 7→ Xt(ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case of
Brownian motion (below), for example, and its relatives. Sometimes we need
to allow our random function Xt(ω) to have jumps. It is then customary,
and convenient, to require Xt to be right-continuous with left limits (rcll),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for in-
stance, for the Poisson process and its relatives.
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General results on realisability – whether or not it is possible to realise,
or obtain, a process so as to have its paths in a particular function space –
are known, but it is usually better to construct the processes we need directly
on the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
Doob’s classic book [D].

The continuous-time theory is technically much harder than the discrete-
time theory, for two reasons:
(i) questions of path-regularity arise in continuous but not in discrete time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

Filtrations and Insider Trading
Recall that a filtration models an information flow. In our context, this

is the information flow on the basis of which market participants – traders,
investors etc. – make their decisions, and commit their funds and effort.
All this is information in the public domain – necessarily, as stock exchange
prices are publicly quoted.

Again necessarily, many people are involved in major business projects
and decisions (an important example: mergers and acquisitions, or M&A)
involving publicly quoted companies. Frequently, this involves price-sensitive
information. People in this position are – rightly – prohibited by law from
profiting by it directly, by trading on their own account, in publicly quoted
stocks but using private information. This is rightly regarded as theft at the
expense of the investing public.2 Instead, those involved in M&A etc. should
seek to benefit legitimately (and indirectly) – enhanced career prospects,
commission or fees, bonuses etc.

The regulatory authorities (Securities and Exchange Commission – SEC
– in US; Financial Conduct Authority (FCA) and Prudential Regulation Au-
thority (PRA, part of the Bank of England (BoE) in UK) monitor all trading
electronically. Their software alerts them to patterns of suspicious trades.

2The plot of the film Wall Street revolves round such a case, and is based on real life
– recommended!
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The software design (necessarily secret, in view of its value to criminals)
involves all the necessary elements of Mathematical Finance in exaggerated
form: economic and financial insight, plus: mathematics; statistics (espe-
cially pattern recognition, data mining and machine learning); numerics and
computation.

§2. Classes of Processes.

1. Martingales.
The martingale property in continuous time is just that suggested by the

discrete-time case:
E[Xt|Fs] = Xs (s < t),

and similarly for submartingales and supermartingales. There are regular-
ization results, under which one can take Xt right-continuous in t. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition, easy in discrete time (III.8), is a deep result in continuous time.
For background, see e.g.
MEYER, P.-A. (1966): Probabilities and potentials. Blaisdell
– and subsequent work by Meyer and the French school (Dellacherie & Meyer,
Probabilités et potentiel, I-V, etc.
2. Gaussian Processes.

Recall the multivariate normal distribution N(µ,Σ) in n dimensions. If
µ ∈ Rn, Σ is a non-negative definite n×n matrix, X has distribution N(µ,Σ)
if it has characteristic function

φX(t) := E exp{itT .X} = exp{itT .µ− 1

2
tTΣt} (t ∈ Rn).

If further Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)
1
2
n|Σ|

1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)}

(Edgeworth’s Theorem of 1893: F. Y. Edgeworth (1845-1926), English statis-
tician).

A process X = (Xt)t≥0 is Gaussian if all its finite-dimensional distribu-
tions are Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with EXt = µ(t),
(ii) a non-negative definite function σ(s, t) with

σ(s, t) = cov(Xs, Xt).
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Gaussian processes have many interesting properties. Among these, we
quote Belayev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time-interval, however short. Naturally,
we shall confine attention in this course to continuous Gaussian processes.

3. Markov Processes.
X is Markov if for each t, each A ∈ σ(Xs : s > t) (the ‘future’) and

B ∈ σ(Xs : s < t) (the ‘past’),

P (A|Xt, B) = P (A|Xt).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned – equivalently, past and
future are conditionally independent given the present.

The same definition applied to Markov processes in discrete time.
X is said to be strong Markov if the above holds with the fixed time t

replaced by a stopping time T (a random variable). This is a real restric-
tion of the Markov property in continuous time (though not in discrete time).

4. Diffusions.
A diffusion is a path-continuous strong-Markov process such that for each

time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(Xt+h −Xt)|Xt = x],

σ2(t, x) := limh↓0
1

h
E[(Xt+h −Xt)

2|Xt = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.
It is not obvious, but it is true, that this definition captures the essence

of physical diffusion (think of smoke diffusing through air, or dye through a
liquid, or heat through metal). The prototype is Brownian motion, below.3

3The mathematics of diffusion of heat goes back to J. Fourier (1768-1830) in 1807;
Théorie analytique de la chaleur in 1822, and the mathematics of Brownian motion to
Wiener in 1923, below. The link was made by S. Kakutani (1911-2004) in 1944; it depends
on Potential Theory.
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