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§3. Brownian Motion.
The Scottish botanist Robert Brown observed pollen particles in sus-

pension under a microscope in 1828 (though others had observed the phe-
nomenon before him),1 and saw that they were in constant irregular motion.

In 1900 L. Bachelier considered Brownian motion a possible model for
stock-market prices:
BACHELIER, L. (1900): Théorie de la spéculation. Ann. Sci. Ecole Nor-
male Supérieure 17, 21-86
– the first time Brownian motion had been used to model financial or eco-
nomic phenomena, and before a mathematical theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of parti-
cles in suspension, and used it to estimate Avogadro’s number (N ∼ 6×1023),
based on the diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

In 1923 Norbert WIENER defined and constructed Brownian motion rig-
orously for the first time. The resulting stochastic process is often called the
Wiener process in his honour, and its probability measure (on path-space) is
called Wiener measure.

We define standard Brownian motion on R, BM or BM(R), to be a
stochastic process X = (Xt)t≥0 such that
1. X0 = 0,
2. X has independent increments: Xt+u−Xt is independent of σ(Xs : s ≤ t)
for u ≥ 0,
3. X has stationary increments: the law of Xt+u −Xt depends only on u,
4. X has Gaussian increments: Xt+u−Xt is normally distributed with mean
0 and variance u,

Xt+u −Xt ∼ N(0, u),

5. X has continuous paths: Xt is a continuous function of t, i.e. t 7→ Xt is
continuous in t.

For time t in a finite interval – [0, 1], say – we use the following filtered
space:
Ω = C[0, 1], the space of all continuous functions on [0, 1].

1The Roman author Lucretius observed this phenomenon in gases – dust particles
dancing in sunbeams – in antiquity: De rerum natura [The nature of things], c. 50 BC.
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The points ω ∈ Ω are thus random functions, and we use the coordinate
mappings: Xt, or Xt(ω), = ωt.
The filtration is given by Ft := σ(Xs : 0 ≤ s ≤ t), F := F1.
P is the measure on (Ω,F) with finite-dimensional distributions specified
by the restriction that the increments Xt+u−Xt are stationary independent
Gaussian N(0, u).

Theorem (WIENER, 1923). Brownian motion exists.

The best way to prove this is by construction, and one that reveals some
properties. The proof that follows is originally due to Paley, Wiener and
Zygmund (1933) and Lévy (1948), but is re-written in the modern language
of wavelet expansions. We omit details; for these, see e.g. [BK] 5.3.1, or SP
L20-22. The Haar system (Hn) = (Hn(.)) is a complete orthonormal system
(cons) of functions in L2[0, 1]. The Schauder System (∆n) is obtained by
integrating the Haar system. Consider the triangular (‘tent’) function:

∆(t) =


2t on [0, 1

2
),

2(1− t) on [1
2
, 1],

0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t) (‘mother wavelet’), and define the nth
Schauder function ∆n (‘daughter wavelets’) by ‘dilation and translation’:

∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).

Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). Then∫ t

0

H(u)du =
1

2
∆(t),

and ∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2 (n = 2j + k ≥ 1).
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The Schauder system (∆n) is again a complete orthogonal system on L2[0, 1].
We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Zn)∞0
independent N(0, 1) random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)t∈[0,1] on (C[0, 1],F , (Ft), P ). The construction gives X on C[0, n] for
each n = 1, 2, · · ·, and combining these: X exists on C[0,∞). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. However, existence is really all we
need, and this we shall take for granted. For background, see any measure-
theoretic text on stochastic processes. The classic is Doob’s book, quoted
above (see VIII.2 there). Excellent modern texts include Karatzas & Shreve
[KS] (see particularly §2.2-4 for construction and §5.8 for applications to eco-
nomics), Revuz & Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô
calculus – below).

We shall henceforth denote standard Brownian motion BM(R) – or just
BM for short – by B = (Bt) (B for Brown), though W = (Wt) (W for
Wiener) is also common. Standard Brownian motion BM(Rd) in d dimen-
sions is defined by B(t) := (B1(t), · · · , Bd(t)), where B1, · · · , Bd are inde-
pendent standard Brownian motions in one dimension (independent copies of
BM(R)).

Zeros.
It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.

Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n
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(indeed, infinitely many such zeros). So if

Z := {t ≥ 0 : Xt = 0}

denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if tn are zeros and tn → t, then by path-continuity B(tn)→ B(t); but
B(tn) = 0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, any diagram one attempts to draw of Brownian motion
grossly distorts Z: it is impossible to draw a realistic picture of a Brownian
path.

Brownian Scaling.
For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is N(0, t).

Thus Xc has all the defining properties of a Brownian motion (Problems 9
Q2). So, Xc IS a Brownian motion:

Theorem. If X is BM and c > 0, Xc(t) := c−1X(c2t), then Xc is again a
BM .

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

Simulation of Brownian motion.
By the PWZ Theorem, all we need to simulate BM is a sequence of in-

dependent standard normal Zn (how many depends on our required degree
of accuracy). The most basic simulation is from the uniform distribution on

4



(0, 1), U(0, 1), directly from a random number generator. We can then use
the Probability Integral Transformation to transform U ∼ U(0, 1) to stan-
dard normal, Z := Φ(U) ∼ N(0, 1). But there is no explicit form for Φ.
Because of this, it is easier to use the Box-Muller method: use plane polar
coordinates, and generate pairs of standard normals. See e.g. my homepage,
Introductory Statistics, I (under SMF: Statistical Methods for Finance).

§4. Quadratic Variation (QV) of Brownian Motion; Itô’s Lemma

Recall that for ξ N(µ, σ2), ξ has moment-generating function (MGF)

M(t) := E exp{tξ} = exp{µt+
1

2
σ2t2}.

Take µ = 0 below; for ξ N(0, σ2),

M(t) := E exp{tξ} = exp{1

2
σ2t2}

= 1 +
1

2
σ2t2 +

1

2!
(
1

2
σ2t2)

2

+O(t6)

= 1 +
1

2!
σ2t2 +

3

4!
σ4t4 +O(t6).

So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),

E[ξ2] = varξ = σ2, E[ξ4] = 3σ4, so var(ξ2) = E[ξ4]−(E[ξ2])2 = 2σ4.

For B BM , this gives in particular

E[Bt] = 0, varBt = t, E[(Bt)
2] = t, var[(Bt)

2] = 2t2.

In particular, for t > 0 small, this shows that the variance of B2
t is negligible

compared with its expected value. Thus, the randomness in B2
t is negligible

compared to its mean for t small.
This suggests that if we take a fine enough partition P of [0, T ] – a finite

set of points
0 = t0 < t1 < · · · < tk = T

with |P| := max |ti − ti−1| small enough – then writing

∆B(ti) := B(ti)−B(ti−1), ∆ti := ti − ti−1,
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Σ(∆B(ti))
2 will closely resemble ΣE[(∆B(ti)

2], which is Σ∆ti = Σ(ti −
ti−1) = T . This is in fact true a.s.:

Σ(∆B(ti))
2 → Σ∆ti = T as max |ti − ti−1| → 0.

This limit is called the quadratic variation V 2
T of B over [0, T ]:

Theorem (Lévy). The quadratic variation of a Brownian path over [0, T ]
exists and equals T , a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.
If we increase t by a small amount to t + dt, the increase in the QV can

be written symbolically as (dBt)
2, and the increase in t is dt. So, formally

we may summarise the theorem as

(dBt)
2 = dt.

Suppose now we look at the ordinary variation Σ|∆Bt|, rather than the
quadratic variation Σ(∆Bt)

2. Then instead of Σ(∆Bt)
2 ∼ Σ∆t ∼ t, we get

Σ|∆Bt| ∼ Σ
√

∆t. Now for ∆t small,
√

∆t is of a larger order of magnitude
that ∆t. So if Σ∆t = t converges, Σ

√
∆t diverges to +∞. This suggests –

what is in fact true – the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +∞ on every interval, a.s.

The QV result above leads to Lévy’s 1948 result, the Martingale Char-
acterization of BM. Recall that Bt is a continuous martingale with respect
to its natural filtration (Ft) and with QV t. There is a remarkable converse;
we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (Ft)-martingale with M0 = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

Theorem (Lévy). If M is any continuous (Ft)-martingale with M0 = 0
and M2

t − t a martingale, then M is an (Ft)-Brownian motion.
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For proof, see e.g. [RW1], I.2. Observe that for s < t,

B2
t = [Bs + (Bt −Bs)]

2 = B2
s + 2Bs(Bt −Bs) + (Bt −Bs)

2,

E[B2
t |Fs] = B2

s + 2BsE[(Bt−Bs)|Fs] +E[(Bt−Bs)
2|Fs] = B2

s + 0 + (t− s) :

E[B2
t − t|Fs] = B2

s − s :

B2
t − t is a martingale.

Quadratic Variation (QV).
The theory above extends to continuous martingales (bounded continu-

ous martingales in general, but we work on a finite time-interval [0, T ], so
continuity implies boundedness). We quote (for proof, see e.g. [RY], IV.1):

Theorem. A continuous martingale M is of finite quadratic variation 〈M〉,
and 〈M〉 is the unique continuous increasing adapted process vanishing at
zero with M2 − 〈M〉 a martingale.

Corollary. A continuous martingale M has infinite variation.

Quadratic Covariation. We write 〈M,M〉 for 〈M〉, and extend 〈 〉 to a bilin-
ear form 〈., .〉 with two different arguments by the polarization identity:

〈M,N〉 :=
1

4
(〈M +N,M +N〉 − 〈M −N,M −N〉).

If N is of finite variation, M ±N has the same QV as M , so 〈M,N〉 = 0.

Itô’s Lemma. We discuss Itô’s Lemma in more detail in V.6 below; we
pause here to give the link with quadratic variation and covariation. We
quote: if f(t, x1, · · · , xd) is C1 in its zeroth (time) argument t and C2 in its
remaining d space arguments xi, and M = (M1, · · · ,Md) is a continuous
vector martingale, then (writing fi, fij for the first partial derivatives of
f with respect to its ith argument and the second partial derivatives with
respect to the ith and jth arguments) f(Mt) has stochastic differential

df(Mt) = f0(M)dt+ Σd
i=1fi(Mt)dM

i
t +

1

2
Σd

i,j=1fij(Mt)d〈M i,M j〉t.

Integration by Parts. If f(t, x1, x2) = x1x2, we obtain

d(MN)t = NdMt +MdNt + d〈M,N〉t
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(no half: two terms, (M,N) and (N,M). Similarly for stochastic integrals
(defined below): if Zi :=

∫
HidMi (i = 1, 2), d〈Z1, Z2〉 = H1H2d〈M1,M2〉.

Note. The integration-by-parts formula – a special case of Itô’s Lemma, as
above – is in fact equivalent to Itô’s Lemma: either can be used to derive the
other. Rogers & Williams [RW1, IV.32.4] describe the integration-by-parts
formula/Itô’s Lemma as ‘the cornerstone of stochastic calculus’.
Fractals Everywhere.

As we saw, a Brownian path is a fractal – a self-similar object. So too is
its zero-set Z. Fractals were studied, named and popularised by the French
mathematician Benôit B. Mandelbrot (1924-2010). See his books, and
Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales – diametrically opposite to the familiar
functions of Calculus. In Differential Calculus, a differentiable function has a
tangent; this means that locally, its graph looks straight; similarly in Integral
Calculus. While most continuous functions we encounter are differentiable,
at least piecewise (i.e., except for ‘kinks’), there is a sense in which the typi-
cal, or generic, continuous function is nowhere differentiable. Thus Brownian
paths may look pathological at first sight – but in fact they are typical!
Hedging in continuous time.

Imagine hedging an option in continuous time. In discrete time, this
involves repeatedly rebalancing our portfolio between cash and stock; in con-
tinuous time, this has to be done continuously. The relevant stochastic pro-
cesses (Ch. VI) are geometric Brownian motion (GBM), relatives of BM,
which, like BM, have infinite variation (finite QV). This makes the rebalanc-
ing problematic – indeed, impossible in these terms. Analogy: a cyclist has
to rebalance continuously, but does so smoothly, not with infinite variation!
Or, think of continuous-time control of a manned space-craft (Kalman filter).
In practice, hedging has to be done discretely (as in Ch. IV). Or, we can use
price processes with jumps (Ch. VI) – finite variation, but now the markets
are incomplete.

In reality, markets have transaction costs (a form of market friction – see
Ch. I). So even if we could rebalance continuously, we wouldn’t: the transac-
tion costs would in principle be infinite, and in practice make it uneconomic.

§5. Stochastic Integrals (Itô Calculus)

Stochastic integration was introduced by K. ITÔ in 1944, hence its name
Itô calculus. It gives a meaning to

∫ t

0
XdY =

∫ t

0
Xs(ω)dYs(ω), for suitable
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stochastic processes X and Y , the integrand and the integrator. We shall con-
fine our attention here to the basic case with integrator Brownian motion:
Y = B. Much greater generality is possible: for Y a continuous martingale,
see [KS] or [RY]; for a systematic general treatment, see
MEYER, P.-A. (1976): Un cours sur les intégrales stochastiques. Séminaire
de Probabilités X: Lecture Notes on Math. 511, 245-400, Springer.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of II.2. For, the Lebesgue-Stieltjes integrals described there have
as integrators the difference of two monotone (increasing) functions (by Jor-
dan’s theorem), which are locally of finite (bounded) variation, FV. But we
know from V.4 that Brownian motion is of infinite (unbounded) variation on
every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamentally
different.

In view of the above, it is quite surprising that Itô integrals can be defined
at all. But if we take for granted Itô’s fundamental insight that they can be,
it is obvious how to begin and clear enough how to proceed: we follow the
procedure of Ch. II. We begin with the simplest possible integrands X, and
extend successively much as we extended the measure-theoretic integral of
Ch. II.

1. Indicators.
If Xt(ω) = I[a,b](t), there is exactly one plausible way to define

∫
XdB:

∫ t

0

XdB, or

∫ t

0

Xs(ω)dBs(ω), :=


0 if t ≤ a,
Bt −Ba if a ≤ t ≤ b,
Bb −Ba if t ≥ b.

2. Simple functions. Extend by linearity: if X is a linear combination of
indicators, X = ΣciI[ai,bi], we should define∫ t

0

XdB := Σci

∫ t

0

I[ai,bi]dB.

Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
expressions above. It turns out that finite sums are not essential: one can
have infinite sums, but now we take the ci uniformly bounded.

We begin again, this time calling a stochastic process X simple if there is
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an infinite sequence

0 = t0 < t1 < · · · < tn < · · · → ∞

and uniformly bounded Ftn-measurable random variables ξn (|ξn| ≤ C for all
n and ω, for some C) such that Xt(ω) can be written in the form

Xt(ω) = ξ0(ω)I{0}(t) + Σ∞i=0ξi(ω)I(ti,ti+1](t) (0 ≤ t <∞, ω ∈ Ω).

The only definition of
∫ t

0
XdB that agrees with the above for finite sums is,

if n is the unique integer with tn ≤ t < tn+1,

It(X) :=

∫ t

0

XdB = Σn−1
0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn))

= Σ∞0 ξi(B(t ∧ ti+1)−B(t ∧ ti)) (0 ≤ t <∞).

We note here some properties of the stochastic integral defined so far:

A. I0(X) = 0 P − a.s.

B. Linearity. It(aX + bY ) = aIt(X) + bIt(Y ).
Proof. Linear combinations of simple functions are simple.

C. E[It(X)|Fs] = Is(X) P − a.s. (0 ≤ s < t <∞) :
It(X) is a continuous martingale.
Proof. There are two cases to consider.
(i) Both s and t belong to the same interval [tn, tn+1). Then

It(X) = Is(X) + ξn(B(t)−B(s)).

But ξn is Ftn-measurable, so Fs-measurable (tn ≤ s), so independent of
B(t)−B(s) (independent increments property of B). So

E[It(X)|Fs] = Is(X) + ξnE[B(t)−B(s)|Fs] = Is(X).

(ii) s < t and t belong to different intervals: s ∈ [tm, tm+1) for m < n. Then

E[It(X)|Fs] = E[E[It(X)|Ftn ]|Fs] (iterated conditional expectations: s < tn)

= E[Itn(X)|Fs],
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by (i). Now Itn(X) is Itm+1(X) plus a sum of products of ξs and the Brow-
nian increment over the next interval. Taking E[.|Fs], the terms in the sum
contribute 0, again as in (i) above. This reduces to tm+1:

E[It(X)|Fs] = E[Itm+1(X)|Fs].

This reduces to case (i). //

Note. The stochastic integral for simple integrands is essentially a martingale
transform, and the above is essentially the proof of Ch. III that martingale
transforms are martingales.

We pause to note a property of martingales which we shall need below.
Call Xt−Xs the increment of X over (s, t]. Then for a martingale X (square-
integrable, i.e. in L2, to make the expectations below well-defined – see
below), the product of the increments over disjoint intervals has zero mean.
For, if s < t ≤ u < v,

E[(Xv −Xu)(Xt −Xs)] = E[E[(Xv −Xu)(Xt −Xs)|Fu]]

= E[(Xt −Xs)E[(Xv −Xu)|Fu]],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the LHS is zero, as required.

D (Itô isometry). E[(It(X))2], or E[(
∫ t

0
XsdBs)

2], = E
∫ t

0
X2

sds.
Proof. The LHS above is E[It(X).It(X)], i.e.

E[(Σn−1
i=0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn)))2].

Expanding the square, the cross-terms have expectation zero by above, so

E[Σn−1
i=0 ξ

2
i (B(ti+i −B(ti))

2 + ξ2n(B(t)−B(tn))2].

Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(B(ti+1)−B(ti)) =
ti+1 − ti. So we obtain

Σn−1
i=0 E[ξ2i ](ti+1 − ti) + E[ξ2n](t− tn).

This is
∫ t

0
E[X2

u]du = E
∫ t

0
X2

udu, as required.
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E. Itô isometry (continued). It(X)− Is(X) =
∫ t

s
XudBu satisfies

E[(

∫ t

s

XudBu)2] = E[

∫ t

s

X2
udu] P − a.s.

Proof: as above.

F. Quadratic variation. The QV of It(X) =
∫ t

0
XudBu is

∫ t

0
X2

udu.
This is proved in the same way as the case X ≡ 1, that B has quadratic

variation process t.

Integrands.
The properties above suggest that

∫ t

0
XdB should be defined only for

processes with ∫ t

0

EX2
udu <∞ for all t.

We shall restrict attention to such X in what follows. This gives us an L2-
theory of stochastic integration (compare the L2-spaces introduced in Ch.
II), for which Hilbert-space methods are available.

3. Approximation.
Recall steps 1 (indicators) and 2 (simple integrands). By analogy with

the integral of Ch. II, we seek a suitable class of integrands suitably approx-
imable by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of left-continuous adapted
processes X with

∫ t

0
EX2

udu < ∞ for all t > 0 (or all t ∈ [0, T ] with finite
time-horizon T , as here),
(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t

0
XdB may be defined as the

limit of It(Xn) =
∫ t

0
XndB,

(iii) The stochastic integral
∫ t

0
XdB so defined still has properties A-F above.

It is not possible to include detailed proofs of these assertions in a course
of this type [recall that we did not construct the measure-theoretic integral
of Ch. II in detail either – and this is harder!]. The key technical ingredient
needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.
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