ull5a.tex Week 5: am, 24.10.2018

Stochastic integration (continued).

One can define stochastic integration in much greater generality.
1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see
below). The properties above hold, with D replaced by

Bl [ Xy = B[ xzaan,)

See e.g. [KS], [RY] for details.

One can generalise further to semimartingale integrators: these are pro-
cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and It6’s Lemma

Suppose that U,V are adapted processes, with U locally integrable (so
fot Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with f(f E[V2]du < oo for all ¢ (so fg VsdBs is defined as a stochas-
tic integral, as in §5). Then

t t
X; = xg +/ U,ds +/ V.dB,
0 0

defines a stochastic process X with Xy = z(. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation (SDE)

dXt = Utdt + Wch XQ = 29- (SDE)

Now suppose that f : R? — R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second

1



argument (space): f € C12. The question arises of giving a meaning to the
stochastic differential df (¢, X;) of the process f(t, X;), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
f(zo, 21, -+, xq) say. We use suffices to denote partial derivatives: f; :=
Of |0x;, fi; = 0*f/0x;0x; (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: f;; =

fj.i, etc. — Clairaut’s theorem). Then for x = (x¢, x1, - - -, x4) near u,
1
f(a) = f(u) +So(xi — wi) fi(u) + §E§szo($z‘ —u) (x5 — uj) fij(u) + - -

In our case (writing ¢, in place of 0 for the starting time):
1
F(t, X0) = f(to, X(to))+(t=to) fi(to, X (t0))+(X ()= X (t0)) fot5 (t=t0)" i+

(1~ t0)(X(6) — X () iz + 5(X(0) = X (1)) o+ -+,

which may be written symbolically as

df(t, X (t)) = frdt + fodX + %fll(dt)Q + fiodtdX + %fgg(dX)Q + -

In this, we
(i) substitute dX; = U;dt + V,dB, from above,
(i) substitute (dB;)? = dt, i.e. |dB,| = /dt, from §4:

1 1
df = frdi+ fo(Udt+VdB)+5 fi1(dt)*+ fadt(Udi+VdB)+5 for(Udt+VdB)*+- - -

Now using (dB)?* = dt,
(Udt +VdB)* = V3t +2UVdtdB + U?(dt)*
= V2dt + higher-order terms :
1
df = (fi+Ufy+ §V2f22)dt + V fodB + higher-order terms.

Summarising, we obtain [to’s Lemma, the analogue for the Ito or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:



Theorem (It6’s Lemma). If X; has stochastic differential
dXt = Utdt + V;gdBt, XO = Zog,

and f € CY2 then f = f(t, X;) has stochastic differential

df = (L +Ufo+ %szgg)dt + V fodB,.

That is, writing fo for f(0,xg), the initial value of f,

f(taXt>):f0+/0 (f1+Uf2+%V2f22)dt+/D V f,dB.

This important result may be summarised as follows: use Taylor’s theo-
rem formally, together with the rule

(dt)* =0, dtdB =0, (dB)? = dt.

Ito’s Lemma extends to higher dimensions, as does the rule above:
d L a2 d
df = (fo+ i, Uifi + 521‘/1' fu)dt + X5V, fid B;

(where U;, Vi, B; denote the ith coordinates of vectors U, V, B, f;, fi denote
partials as above); here the formal rule is

(dt)? =0,  dtdB;=0, (dB)*=dt, dBidB;=0 (i # ).
Corollary. E|f(t, X)) = fo+ [y Elfi + Ufa+ 3V faldt.

Proof. fot V fodB is a stochastic integral, so a martingale, so its expectation
is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, It6’s Lemma really comes into
its own in the more general setting of semimartingales. It says there that if
X is a semimartingale and f is a smooth function as above, then f(t, X(t))
is also a semimartingale. The ordinary differential dt gives rise to the finite-
variation part, the stochastic differential gives rise to the martingale part.
This closure property under very general non-linear operations is very pow-
erful and important.



Example: The Ornstein-Uhlenbeck Process.

The most important example of a SDE for us is that for geometric Brow-
nian motion (VI.1 below). We close here with another example.

Consider now a model of the velocity V; of a particle at time ¢ (Vy = vp),
moving through a fluid or gas, which exerts
(i) a frictional drag, assumed proportional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas. The basic model is the SDE

dV = —BVdt + cdB, (oU)

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/F and diffusion coefficient D := %02/52. It is a stationary
Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N (0, D) — the
Mazxwell-Boltzmann distribution — and whose limiting correlation function is
e Bl

If we integrate the OU velocity process to get the OU displacement pro-
cess, we lose the Markov property (though the process is still Gaussian).
Being non-Markov, the resulting process is much more difficult to analyse.

The OU process is the prototype of processes exhibiting mean reversion,
or a central push: frictional drag acts as a restoring force tending to push the
process back towards its mean. It is important in many areas, including
(i) statistical mechanics, where it originated;

(il) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates (the mean represents the ‘natural’ interest rate);
(iii) stochastic volatility models, where the volatility o itself is now a stochas-
tic process oy, subject to an SDE of OU type.

Theory of interest rates.

This subject (see MATL481 next semester) dominates the mathematics
of money markets, or bond markets. These are more important in today’s
world than stock markets, but are more complicated, so we must be brief
here. The area is crucially important in macro-economic policy, and in polit-
ical decision-making, particularly after the financial crisis (”credit crunch”).
Government policy is driven by fear of speculators in the bond markets
(rather than aimed at inter-governmental cooperation against them). The
mathematics is infinite-dimensional in principle (at each time-point ¢ we have
a whole yield curve over future times), but reduces to finite-dimensionality
in practice: bonds are only offered at discrete times, with a tenor structure
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(a finite set of maturity times).

Mean reversion is used in models, to reflect the underlying ‘natural in-
terest rate’, from which deviations may occur due to short-term pressures
(pre-Crash — these may be longer-lasting nowadays, as we see post-Crash).

Chapter VI. MATHEMATICAL FINANCE IN CONTINUOUS
TIME

§1. Geometric Brownian Motion (GBM)
As before, we write B for standard Brownian motion. We write B,, , for

Brownian motion with drift  and diffusion coefficient o: the path-continuous
Gaussian process with independent increments such that

Bo(s+1) — B,,(s) is N(ut,o%t).
This may be realised as
B, - (t) = ut + o B(1).

Consider the process

X; = f(t,By) := xo. exp{(pu — 102)15 + 0B}

2
Here, since
F(t,2) = 0. exp{ (1 — 7)1t + o),
flz(ﬂ—%a2)f7 Ja=o0f, foo =0"f.

By Ité’s Lemma (Ch. V: dX; = U,dt + V,dB; and f smooth implies df =
(fi +U fo+ 2V fo0)dt +V fod B;) we have (taking U =0, V =1, X = B),

dX, = df = [(u — %ﬁ)f + %UQf]dt +ofdB; :

dXt = ,det -+ O'det = /.LXtdt + O'XtdBt .

X satisfies the SDE
dX; = Xi(pdt + 0dBy), (GBM)



and is called geometric Brownian motion (GBM). We turn to its economic
meaning, and the role of the two parameters p and o, below.

We recall the model of Brownian motion from Ch. V. It was developed
(by Brown, Einstein, Wiener, ...) in statistical mechanics, to model the ir-
regular, random motion of a particle suspended in fluid under the impact of
collisions with the molecules of the fluid.

The situation in economics and finance is analogous. The price of an asset
depends on many factors: a share in a manufacturing company depends on,
say, its own labour costs, and raw material prices for the articles it manu-
factures. Together, these involve, e.g., foreign exchange rates, labour costs —
domestic and foreign, transport costs, etc. — all of which respond to the un-
folding of events — economic data/political events/the weather/technological
change/labour, commercial and environmental legislation/ ... in time. There
is also the effect of individual transactions in the buying and selling of a
traded asset on the asset price. The analogy between the buffeting effect
of molecules on a particle in the statistical mechanics context on the one
hand, and that of this continuous flood of new price-sensitive information on
the other, is highly suggestive. The first person to use Brownian motion to
model price movements in economics was Bachelier in his celebrated thesis
of 1900.

Bachelier’s seminal work was not definitive (indeed, not correct), either
mathematically (it was pre-Wiener) or economically. In particular, Brownian
motion itself is inadequate for modelling prices, as
(i) it attains negative levels, and
(ii) one should think in terms of return, rather than prices themselves.
However, one can allow for both of these by using geometric, rather than
ordinary, Brownian motion as one’s basic model. This was advocated in
economics from 1965 on by Samuelson! — and was [t0’s starting-point for
his development of Ito or stochastic calculus in 1944 — and has now become
standard:

SAMUELSON, P. A. (1965): Rational theory of warrant pricing. Industrial
Management Review 6, 13-39,

SAMUELSON, P. A. (1973): Mathematics of speculative prices. SIAM Re-
view 15, 1-42.

Returning now to (GBM), the SDE above for geometric Brownian motion
driven by Brownian noise, we can see how to interpret it. We have a risky as-

Paul A. Samuelson (1915-2009), American economist; Nobel Prize in Economics, 1970



set (stock), whose price at time ¢ is Xy; dX; = X (t+dt) — X (¢) is the change
in X; over a small time-interval of length dt beginning at time ¢; dX;/X; is
the gain per unit of value in the stock, i.e. the return. This is a sum of two
components:

(i) a deterministic component pdt, equivalent to investing the money risk-
lessly in the bank at interest-rate p (> 0 in applications), called the under-
lying return rate for the stock,

(ii) a random, or noise, component odB;, with volatility parameter o > 0
and driving Brownian motion B, which models the market uncertainty, i.e.
the effect of noise.

Justification. For a treatment of this and other diffusion models via microe-
conomic arguments, see

[FS] FOLLMER, H. & SCHWEIZER, M. (1993): A microeconomic approach
to diffusion models for stock prices. Mathematical Finance 3, 1-23.

Note. Observe the decomposition of what we are modelling into two com-
ponents: a systematic component and a random component (driving noise).
We have met such decompositions elsewhere — e.g. regression, and the Doob
decomposition.

§2. The Black-Scholes Model

For the purposes of this section only, it is convenient to be able to use the
‘W for Wiener’ notation for Brownian motion/Wiener process, thus liberating
B for the alternative use ‘B for bank [account]’. Thus our driving noise terms
will now involve dW;, our deterministic [bank-account| terms dB;.

We now consider an investor constructing a trading strategy in continuous
time, with the choice of two types of investment:

(i) riskless investment in a bank account paying interest at rate r» > 0 (the
short rate of interest): By = Bpe™ (¢t > 0) [we neglect the complications
involved in possible failure of the bank — though banks do fail — witness
Barings 1995, or AIB 2002!];

(ii) risky investment in stock, one unit of which has price modelled as above
by GM B(u,0). Here the volatility o > 0; the restriction 0 < r < p on the
short rate r for the bank and underlying rate u for the stock are economically
natural (but not mathematically necessary); the stock dynamics are thus
given by

dS; = Sy(udt + odWy).



Notation. Later, we shall need to consider several types of risky stock — d
stocks, say. It is convenient, and customary, to use a superscript v to label
stock type, i = 1,---,d; thus S',---,S? are the risky stock prices. We can
then use a superscript 0 to label the bank account, S°. So with one risky
asset as above, the dynamics are

dsy = rSpdt,
dS; = uS}dt+ oS}dW;.

We shall focus on pricing at time 0 of options with expiry time T'; thus the
index-set for time ¢ throughout may be taken as [0, 7] rather than [0, 00).

We proceed as in the discrete-time model of IV.1. A trading strateqy H
is a vector stochastic process

H=(H,:0<t<T)=(HH, - H):0<t<T)

which is previsible: each H} is a previsible process (so, in particular, (F;_)-
adapted) [we may simplify with little loss of generality by replacing previsi-
bility here by left-continuity of Hy in t]. The vector H, = (H?, H},---, HY)
is the portfolio at time t. If Sy = (SP, S}, -+, S%) is the vector of prices at
time ¢, the value of the portfolio at ¢ is the scalar product

Vi(H) := H.S; = %4 H]S!.
The discounted value is
%(H) = Bt(Ht-St) — Ht.gt,

where 3; := 1/SY = e~ (fixing the scale by taking the initial bank account
as 1, Sy = 1), so i
Sy = (175t81517"'a6tsg)

is the vector of discounted prices.

Recall that
(i) in IV.1 H is a self-financing strategy if AV,,(H) = H,,.AS,, i.e. V,(H) is
the martingale transform of S by H,
(i) stochastic integrals are the continuous analogues of martingale trans-

forms.
We thus define the strategy H to be self-financing, H € SF, if

dV, = H,.dS; = Y4HdS:!.
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The discounted value process is
Vi(H) = e ""Vi(H)
and the interest rate is r. So
dV,(H) = —re "' dt.V,(H) 4 e "'dV,(H)

(since e~ has finite variation, this follows from integration by parts,
1
d(XY), = XidY, + Yid X, + éd(X, Y),

— the quadratic covariation of a finite-variation term with any term is zero)

— —re_rth.Stdt + e_rth-dSt
= Ht,(—’/’e_rtstdt + e_rtdst>
= H,.dS,

(5} = e S, s0 dS; = —re S, dt + e"dS, as above): for H self-financing,

dV,(H) = H,.dS,,  dV,(H) = H,.dS,,

vit) = Vi) + | CHaas, Vi) = Vo(H) + / 1,48,

Now write U} := HS!/V,(H) = HiS!/S;H]S] for the proportion of the
value of the portfolio held in asset i = 0,1,---,d. Then XU} = 1, and
Uy = (U, ---,UZ2) is called the relative portfolio. For H self-financing,

HiS; ds;

dV, =V, XU!dS}/S;.
Dividing through by V;, this says that the return dV;/V; is the weighted
average of the returns dS!/S! on the assets, weighted according to their pro-
portions U} in the portfolio.

Note. Having set up this notation (that of [HP]) — in order to be able if
we wish to have a basket of assets in our portfolio — we now prefer — for
simplicity — to specialise back to the simplest case, that of one risky asset.
Thus we will now take d = 1 until further notice.



§3. The (continuous) Black-Scholes formula (BS): derivation via
Girsanov’s Theorem

The Sharpe ratio.

There is no point in investing in a risky asset with mean return rate p,
when cash is a riskless asset with return rate r, unless p > r. The excess
return 4 — r (the investor’s reward for taking a risk) is compared with the
risk, as measured by the volatility o, via the Sharpe ratio

0:=(n—r)fo,

also known as the market price of risk. This is important, both here (see
below), in CAPM (1.3, Week 1a), and in asset allocation decisions.
Consider now the Black-Scholes model, with dynamics

dBt = TBtdt, dSt = /JStdt + O'Stth.
The discounted asset prices S, := e, have dynamics given, as before, by

dS’t = —Te_rtstdt + e_rtdSt = —TS’tdt + ,U»gtdt + Ugtth
(1t — 7)Sidt + oS, dW, = 0.5,(0dt + dW).

We summarise the main steps briefly as (a) - (f) below:
(a) Dynamics are given by GBM, dS; = pSdt + o SdW, (VI.1).
(b) Discount: dS; = (u — r)Sdt + 0. SdW, = o S(#dt + dW,) (above).

We work with the discounted stock price S;. We would like this to be
a martingale, as in Ch. IV, where we passed from P-measure to (- (or
P*)-measure, so as to make discounted asset prices martingales. Girsanov’s
theorem (below) accomplishes this, in our new continuous-time setting: it
maps P to P* (or @), and u to 7, so 6 to 0. This kills the dt term on the
right in (b). If we then integrate dS; = o.SdW;, we get an It6 integral, so a
martingale, on the right. Assuming this for now:
(¢) Use Girsanov’s Theorem to change u to 7, so 6 := (i — r)/o to 0: under
P*, dS, = o SdW,.
(d) This and dV;(H) = H,dS; (where V is the value process and H the trad-
ing strategy replicating the payoff h — V1.2) give dV;(H) = Hy.0S;dW, (V1.2
above). Integrate: V, is a P*-mg, so has constant E*-expectation.
(e) This gives the Risk-Neutral Valuation Formula (RNVF), as in IV.4.
(f) From RNVF, we can obtain BS, by integration, as in IV.6.
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It remains to state and discuss Girsanov’s theorem. We cannot prove it
in full (only the finite-dimensional approximation below) — this is technical
Measure Theory. But we must expect this in this chapter: in discrete time
(Ch. IV) we could prove everything; here in continuous time, we can’t.

Consider first ([KS], §3.5) independent N (0, 1) random variables 7y, - - -, Z,,

n (2, F,P). Given a vector y = (p1,- -+, ftn), consider a new probability
measure P on (Q, F) defined by

P(dw) = exp{SiuZi(w) — s5ud) P(de).
This is a positive measure as exp{.} > 0, and integrates to 1 as [ exp{p; Z; }dP =
Eleri%] = exp{3p2} (normal MGF — Problems 4b Q1), so is a probability
measure. It is also equivalent to P (has the same null sets), again as the expo-
nential term is positive (the exponential on the right is the Radon-Nikodym
derivative dP/dP). Also

P(Z;edzy, i=1,--,n)=exp{Sipzi—=Siul}.P(Z; €dz, i=1,---,n)

1
2
(Z; € dz; means z; < Z; < z; + dz;, so here Z; = z; to first order)

1 1

1
= (2#)_%" exp{—iE(zi — )}z - - - dzy,

= (27) " exp{Spiz —

This says that if the Z; are independent N (0, 1) under P, they are indepen-
dent N(p;,1) under P. Thus the effect of the change of measure P P,
from the original measure P to the equivalent measure P is to change the
mean, from 0 = (0,---,0) to pu = (u1, -+, fn)-

This result extends to infinitely many dimensions — i.e., stochastic pro-
cesses. This is Girsanov’s theorem, below (Igor Vladimirovich GIRSANOV
(1934-67) in 1960). As this involves a martingale condition, we pause to
note that this is satisfied in the case that concerns us, when the drift p; is
constant, p; = p. This involves the exponential mg of Problems 4b Q3:

Ezxponential martingale.

Write )
M = exp{pW, — 5p’t}.
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This is a martingale. For, if s < t,

EIF] = Blesp{u(W, + (W~ W) — 5p(s+ (6 - )} |
= xp{V, — s} Blesp{u(We — W) — 22(t — )],

as the conditioning has no effect on the second term, by independent incre-
ments of Brownian motion. The first term on the right is M,. The second
term is 1. For, if Z ~ N(0,1),

1
Elexp{nZ}] = exp{5°}
(normal MGF). Also,
W, — W, =vi—sZ,  Z~N(0,1)

(properties of BM). Combining, M is a mg, as required. //

Theorem (Girsanov’s Theorem). Let (1; : 0 < ¢ < T') be an adapted
process with fOT p2dt < oo a.s. such that the process L with

t 1 t
L, := exp{/ psdWs — 5/ pids} 0<t<T)
0 0

is a martingale. Then, under the probability P, with density Ly relative to
P, the process W* defined by

t
Wy =W, — / ftsds, 0<t<T)
0

is a standard Brownian motion (so W is BM + fg sds).

Here, L; is the Radon-Nikodym derivative of Pr, w.r.t. P on the o-algebra
Fi. In particular, for u; = p, change of measure by introducing the RN
derivative exp{uW; — %uQ} corresponds to a change of drift from 0 to p.

So the case p; constant = p of Girsanov’s theorem passes between BM
and BM + ut. The argument above uses this with u — r for u.

Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem) is for-
mulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].
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