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Theorem (Risk-Neutral Valuation Formula, RNVF). The no-arbitrage
price of the claim h(ST ) is given by

F (t, x) = e−r(T−t)E∗t,x[h(ST )|Ft],

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σStdWt.

Proof (Step (e) in the above: (a) – (d) are already done). Change measure
from P , corresponding to GBM(µ, σ), to P ∗, corresponding to GBM(r, σ),
by Girsanov’s Theorem. Then as above, dS̃t = σS̃tdWt. So by VI.2, dṼt =
HtdS̃t = Ht.σS̃tdWt, where V is the value process following strategy H to
replicate payoff h. Integrating, Ṽt is a P ∗-martingale, as it is an Itô integral.
So it has constant expectation. So if St = x is the asset price at time t,

E∗t,x[Ṽt(H)|Ft] = E∗t,xṼT (H) = e−rTE∗t,xh(ST ) :

F (t, x) = E∗t,xVt(H) = e−r(T−t)E∗t,xh(ST ). //

Theorem ((Continuous) Black-Scholes Formula, BS).

F (t, S) = SΦ(d+)−e−r(T−t)KΦ(d−), d± := [log(S/K)+(r±1

2
σ2)(T−t)]/σ

√
T − t.

Proof (Step (f) in the above). After the change of measure P 7→ P ∗, µ 7→ r
by Girsanov’s Theorem, St has P ∗-dynamics as in GBM(r, σ):

dSt = rStdt+ σStdWt, St = s, (∗)

with W a P ∗-Brownian motion. So (VI.1) we can solve this explicitly:

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).
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So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)
∫ ∞
−∞

h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)
∫ ∞
−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t) +σ(T − t)

1
2x}−K]+dx.

We have already evaluated exactly this integral in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage
to the limit. Completing the square in the exponential as before gives the
result, as in IV.6 Week 3b. //

Comments.
1. Risk-neutral measure. We call P ∗ the risk-neutral probability measure. It
is equivalent to P (by Girsanov’s Theorem, which gives the Radon-Nikodym
derivative showing equivalence), and is a martingale measure (as the dis-
counted asset prices are P ∗-martingales, by above), i.e. P ∗ (or Q) is the
equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing (FTAP). The above continuous-
time result may be summarised just as the FTAP in discrete time: to get
the no-arbitrage price of a contingent claim, take the discounted expected
value under the equivalent mg (risk-neutral) measure, conditional on what
we know now.
3. Completeness. In discrete time, we saw that absence of arbitrage corre-
sponded to existence of risk-neutral measures, completeness to uniqueness.
We have obtained existence and uniqueness here (and so completeness), by
appealing to Girsanov’s Theorem, which we have not proved in full. Com-
pleteness questions are linked to the Representation Theorem for Brownian
Martingales, below.
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Theorem (Representation Theorem for Brownian Martingales). Let
(Mt : 0 ≤ t ≤ T ) be a square-integrable martingale with respect to the
Brownian filtration (Ft). Then there exists an adapted process H = (Ht :
0 ≤ t ≤ T ) with E

∫
H2
sds <∞ such that

Mt = M0 +

∫ t

0

HsdWs, 0 ≤ t ≤ T.

That is, all Brownian martingales may be represented as stochastic integrals
with respect to Brownian motion.

We refer to, e.g., [KS], [RY] for proof.
The economic relevance of the Representation Theorem is that it shows

(see e.g. [KS, I.6], and below) that the Black-Scholes model is complete – that
is, that EMMs are unique, and so that Black-Scholes prices are unique (we
know this already, from FTAP/RNVF above). Mathematically, the result is
purely a consequence of properties of the Brownian filtration. The desirable
mathematical properties of BM are thus seen to have hidden within them
desirable economic and financial consequences of real practical value.
Hedging.

To find a hedging strategy H = (H0
t , Ht) (H0

t for cash, Ht for stock) that
replicates the value process V = (Vt), itself given by RNVF (VI.3 Week 5a):

Vt = H0
t +HtSt = E∗[e−r(T−t)h|Ft].

Now
Mt := E∗[e−rTh|Ft]

is a martingale (indeed, a uniformly integrable mg: IV.4, V.2) under the
filtration Ft, that of the driving BM in (GBM) (VI.1, VI.2), and the filtration
is unchanged by the Girsanov change of measure (we quote this). So by the
Representation Theorem for Brownian Martingales, there is some adapted
process K = (Kt) with

Mt = M0 +

∫ t

0

KsdWs (t ∈ [0, T ]).

Take
Ht := Kt/(σS̃t), H0

t := Mt −HtS̃t.
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Then

dMt = KtdWt =
Kt

σS̃t
.σS̃tdWt = HtdS̃t,

and the strategy given by K is self-financing, by VI.2. This is of limited
practical value:
(a) the Representation Theorem does not give K = (Kt) explicitly – it is
merely an existence proof;
(b) we already know that, as Brownian paths have infinite variation, exact
hedging in the Black-Scholes model is too rough to be practically possible.

Comments on the Black-Scholes formula.
1. The Black-Scholes formula transformed the financial world. Before it (see
Ch. I), the expert view was that asking what an option is worth was (in
effect) a silly question: the answer would necessarily depend on the attitude
to risk of the individual considering buying the option. It turned out that –
at least approximately (i.e., subject to the restrictions to perfect – frictionless
– markets, including No Arbitrage – an over-simplification of reality) there
is an option value. One can see this in one’s head, without doing any math-
ematics, if one knows that the Black-Scholes market is complete (above). So,
every contingent claim (option, etc.) can be replicated, by a suitable com-
bination of cash and stock. Anyone can price this: (i) count the cash, and
count the stock; (ii) look up the current stock price; (iii) do the arithmetic.
2. The programmable pocket calculator was becoming available around this
time. Every trader immediately got one, and programmed it, so that he
could price an option (using the Black-Scholes model!) in real time, from
market data.
3. The missing quantity in the Black-Scholes formula is the volatility, σ. But,
the price is continuous and strictly increasing in σ (options like volatility!).
So there is exactly one value of σ that gives the price at which options are
being currently traded. This – the implied volatility – is the value that the
market currently judges σ to be, and the one that traders use.
4. Because the Black-Scholes model is the benchmark model of mathematical
finance, and gives a value for σ at the push of a button, it is widely used.
5. This is despite the fact that no one actually believes the Black-Scholes
model! It is an over-simplified approximation to reality. Indeed, Fischer
Black himself famously once wrote a paper called The holes in Black-Scholes.
6. This is an interesting example of theory and practice interacting!
7. Black and Scholes had considerable difficulty in getting their paper pub-
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lished! It was ahead of its time. When published, and its importance under-
stood, it changed its times.
8. Black-Scholes theory and its developments, plus the internet (a global
network of fibre-optic cables – using photons rather than electrons), were
important contributory factors to globalization. Enormous sums of money
can be transported round the world at the push of a button, and are every
day. This has led to financial contagion – ”one country’s economic problem
becomes the world’s economic problem”. (The Ebola virus comes to mind
here.) The resulting problems of systemic stability are very important, and
still largely unsolved; they dominate the agenda at international meetings.

4. BS via the Black-Scholes PDE and the Feynman-Kac formula

Theorem (Black-Scholes PDE, 1973). In a market with one riskless
asset Bt and one risky asset St, with short interest-rate r and dynamics

dBt = rBtdt,

dSt = µ(t, St)Stdt+ σ(t, St)StdWt,

let a contingent claim be tradable, with price h(ST ) at expiry T and price
process Πt := F (t, St) for some smooth function F . Then the only pricing
function F which does not admit arbitrage is the solution to the Black-Scholes
PDE with boundary condition:

F1(t, x) + rxF2(t, x) +
1

2
x2σ2(t, x)F22(t, x)− rF (t, x) = 0, (BS)

F (T, x) = h(x). (BC)

Proof. By Itô’s Lemma (Π = F , dΠ = dF ),

dΠt = F1dt+ F2dSt +
1

2
F22(dSt)

2

(since t has finite variation, the F11- and F12-terms are absent as (dt)2 and
dtdSt are negligible with respect to the terms retained)

= F1dt+ F2(µStdt+ σStdWt) +
1

2
F22(µStdt+ σStdWt)

2

= F1dt+ F2(µStdt+ σStdWt) +
1

2
F22(σStdWt)

2
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(the contribution of the FV terms in dt are negligible, as above)

= (F1 + µStF2 +
1

2
σ2St

2F22)dt+ σStF2dWt

(as (dWt)
2 = dt). Now Π = F , so (multiplying by Π, dividing by F )

dΠt = Πt(µΠ(t)dt+ σΠ(t)dWt),

where

µΠ(t) := (F1 + µStF2 +
1

2
σ2S2

t F22)/F, σΠ(t) := σStF2/F.

Now form a portfolio based on two assets: the underlying stock and the
option (recall that options are also assets in their own right – they have a
value (Black-Scholes formula), and are traded (in large quantities)). Let the
relative portfolio in stock S and derivative Π be (US

t , U
Π
t ). Then the dynamics

for the value V of the portfolio are given by

dVt/Vt = US
t dSt/St + UΠ

t dΠt/Πt

= US
t (µdt+ σdWt) + UΠ

t (µΠdt+ σΠdWt)

= (US
t µ+ UΠ

t µΠ)dt+ (US
t σ + UΠ

t σΠ)dWt,

by above. Now both brackets are linear in US, UΠ, and US + UΠ = 1 as
proportions sum to 1. This is one linear equation in the two unknowns
US, UΠ, and we can obtain a second one by eliminating the driving Wiener
term in the dynamics of V – for then, the portfolio is riskless. So it must
have return r, the riskless interest rate, to avoid arbitrage. We thus solve
the two equations

US + UΠ = 1

USσ + UΠσΠ = 0.

The solution of the two equations above is

UΠ =
σ

σ − σΠ

, US =
−σΠ

σ − σΠ

,

which as σΠ = σSF2/F gives the portfolio explicitly as

UΠ =
F

F − SF2

, US =
−SF2

F − SF2

.
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With this choice of relative portfolio, the dynamics of V are given by

dVt/V = (US
t µ+ UΠ

t µΠ)dt,

which has no driving Wiener term. So, no arbitrage as above implies that
the return rate is the short interest rate r:

US
t µ+ UΠ

t µΠ = r.

Now substitute the values (obtained above)

µΠ = (F+µSF2+
1

2
σ2S2F22)/F, US = (−SF2)/(F−SF2), UΠ = F/(F−SF2).

Substituting the values above in the no-arbitrage relation gives

−SF2

F − SF2

.µ+
F

F − SF2

.
F1 + µSF2 + 1

2
σ2F22

F
= r.

So

−SF2µ+ F1 + µSF2 +
1

2
σ2S2F22 = rF − rSF2,

giving the Black-Scholes PDE as required:

F1 + rSF2 +
1

2
σ2S2F22 − rF = 0. (BS) //

Black and Scholes were classically trained applied mathematicians. When
they derived their PDE, they recognised it as parabolic, and so a relative of
the heat equation. After some months’ work, they were able to transform
it into the heat equation. The solution to this is known classically.1 On
transforming back, they obtained the Black-Scholes formula.

Theorem (Feynman-Kac Formula). The solution F (t, x) to the PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = g(t, x) (PDE)

1See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my
website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for
(fundamental solution of) the heat equation has the form of a normal density (heat kernel).
This reflects the close link between the mathematics of the heat equation (Fourier in 1807)
and the mathematics of Brownian motion (Wiener in 1923) noted earlier (Kakutani, 1944
– Potential Theory).
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with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT )− Et,x
∫ T

t

g(s,Xs)ds, (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

with initial condition Xt = x.

Proof. Consider a SDE, with initial condition (IC), of the form

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ), (SDE)

Xt = x. (IC)

For suitably well-behaved functions µ, σ, this SDE has a unique solution
X = (Xs : t ≤ s ≤ T ), a diffusion. We refer for details on solutions of SDEs
and diffusions to an advanced text such as [RW2], [RY], [KS §5.7]. Uniqueness
of solutions of the SDE is related to completeness, and uniqueness of prices
(Representation Theorem for Brownian Martingales, above). (This is as in
the FTAP of Ch. IV, but the continuous-time case is harder – here we have
to quote uniqueness rather than prove it.)

Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma, as above,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1 +µF2 +

1

2
σ2F22)ds+σF2dWs.

(∗∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = g(t, x) (PDE)

F (T, x) = h(x). (BC)
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Then (∗∗) gives
dF = gds+ σF2dWs,

which can be written in stochastic-integral form as

F (T,XT ) = F (t,Xt) +

∫ T

t

g(s,Xs)ds+

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, writing Et,x
for expectation with value x and starting-time t, and the price at expiry T
as h(XT ) as before, taking Et,x gives the Feynman-Kac formula:

Et,xh(XT ) = F (t, x) + Et,x

∫ T

t

g(s,Xs)ds. //

Re-derivation of the Black-Scholes formula via the Black-Scholes PDE and
the Feynman-Kac formula.

Now replace µ(t, x) by rx, σ(t, x) by σx, g by rF in the Feynman-Kac
formula above. The SDE becomes that for GBM(r, σ):

dXs = rXsds+ σXsdWs (∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = rF, (BS)

the Black-Scholes PDE. So by the Feynman-Kac formula,

dF = rFds+ σF2dWs, F (T, s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.

Then integrating, G is a stochastic integral, so a martingale: the discounted
price process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗
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giving the dynamics in (∗). This is the measure P we started with, except
that µ has been changed to r. By the martingale property of G:

E∗t,x[G(t,Xt)] = E∗t,x[e
−rtF (t,Xt)] = e−rtF (t, x)

= E∗T,x[e
−rTF (T,XT )|Ft] = e−rTE∗T,xh(XT )|Ft].

This gives the Black-Scholes formula, as before. //

§5. Infinite time-horizon; American puts

We sketch here the theory of the American option (one can exercise at
any time), over an infinite time-horizon; for details see Peskir & Shiryaev [PS,
VII, 25.1]. We deal first with a put option (see Week 6a, VI.6 under Real
options (Investment options) for the corresponding ‘call option’) – giving the
right to sell at the strike price K, at any time τ of our choosing. This τ
has to be a stopping time: we have to take the decision whether or not to
stop at τ based on information already available (that is, contained in Fτ –
no access to the future, no insider trading). As above, we pass to the risk-
neutral measure.

Under the risk-neutral measure, the SDE for GBM becomes

dXt = rXtdt+ σXtdBt. (GBMr)

To evaluate the option, we have to solve the optimal stopping problem

V (x) := sup
τ
Ex[e

−rτ (K −Xτ )
+],

with the supremum taken over all stopping times τ and X0 = x under Px.
The process X satisfying (GBMr) – a diffusion – is specified by a second-

order linear differential operator, called its (infinitesimal) generator,

LX := rxD +
1

2
σ2x2D2, D := ∂/∂x.

Now the payoff if we sell when Xτ = x ∈ (0, K) is K −x, so the smaller x is,
the better – the bigger the payoff. But, if we wait too long hoping for x to get
even smaller, the danger is that it might instead get bigger. This suggests
that a sensible strategy is to fix some level b, to be determined optimally,
and stop as soon as X gets as small as b: stop at τ = τb, where

τb := inf{t ≥ 0 : Xt ≤ b},
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for some b ∈ (0, K). This gives the following free boundary problem for the
unknown value function V (x) and the unknown boundary b:

LXV = rV for x > b; (i)

V (x) = (K − x)+ for x = b; (ii)

V ′(x) = −1 for x = b (smooth fit); (iii)

V (x) > (K − x)+ for x > b; (iv)

V (x) = (K − x)+ for 0 < x < b. (v)

Writing d := σ2/2 (‘d for diffusion’), (i) is

dx2V ′′ + rxV ′ − rV = 0. (i∗)

Trial solution (the ODE is homogeneous!):

V (x) = xp.

Substituting gives a quadratic for p:

p2 − (1− r

d
)p− r

d
= 0.

One root is p = 1; the other is p = −r/d. So the general solution (GS) to
the DE (i∗) is

V (x) = C1x+ C2x
−r/d,

for some constants C1 and C2. But V (x) ≤ K for all x ≥ 0 (an option giving
the right to sell at price K cannot be worth more than K!). So V is bounded.
Taking x large (x < b is covered by (v)), we must have C1 = 0. This gives

C2 =
d

r

( K

1 + d/r

)1+r/d

, b =
K

1 + d/r
,

V (x) =
d

r

( K

1 + d/r

)1+r/d

x−r/d if x ∈ [b,∞)

= K − x if x ∈ (0, b].

This is in fact the full and correct solution to the problem. For details, see
[P&S], §25.1.
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The ‘smooth fit’ in (iii) is characteristic of free boundary problems. For
a heuristic analogy: imagine trying to determine the shape of a rope, tied
to the ground on one side of a convex body, stretched over the body, then
pulled tight and tied to the ground on the other side. We can see on phys-
ical grounds that the rope will be: straight to the left of the convex body;
continuously in contact with the body for a while, then straight to the right
of the body, and there should be ‘no kink’ (‘smooth fit’) in the rope at the
points where it makes and then leaves contact with the body.
Note. 1. A classic free-boundary problem is the Stefan problem, on melt-
ing ice. This relates to the phase change, of passing between water and ice.
Phase changes release or absorb latent heat (‘hidden’ heat). Thus evapora-
tion has a cooling effect (which is why we as warm-blooded mammals sweat)2.
Conversely, this latent heat is released on condensation (which is why steam
burns are even worse than scalding by hot water).
2. Phase changes typically involve an ‘energy-entropy competition’. Nature
tries to increase entropy (entropy is a measure of disorder). Overall, the Law
of Conservation of Energy, or First Law of Thermodynamics, applies: en-
ergy is conserved – in the large. But in the small, ‘Nature tries to mimimise
energy’: an isolated system will settle in equilibrium in a configuration that
uses least energy (it ‘settles down to be comfortable’ – just as we do!). The
ice-water interface (which may be complicated) is what emerges from the
balance between these two conflicting tendencies.
3. There are links with the Calculus of Variations (classical examples:
brachistochrone, the curve of fastest descent; catenary, the curve followed
by a chain hanging under gravity). There are links too with Optimal Stop-
ping; see Peskir and Shiryaev [PS], esp. Ch. III, for a monograph treatment.
4. We are familiar with the three phases of water – solid (ice), liquid (water)
and gas (steam). At normal temperature, freezing point of water is 0o C
(Centigrade) and its boiling point is 100o C. But at high temperature, one
can have a triple point, where all three phases can coexist stable.
5. Titan, the largest moon of Saturn, has a great deal of atmospheric and
liquid surface methane, and has ‘methane weather systems’ analogous to the
weather systems of the Earth driven by water in the atmosphere and oceans.

2The molecules of the water differ in their velocity, according to the Maxwell-Boltzmann
distribution (which we met in V.6 Week 5a in connection with the Ornstein-Uhlenback
process). Because of surface-tension effects, it is the faster-moving water molecules that
are energetic enough to break through the surface film and evaporate. Thus evaporation
cools liquid by draining it differentially of its faster-moving (‘hotter’) molecules.
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