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Lecture 1.

Chapter 1. BACKGROUND ON STOCHASTIC PROCESSES

Before proceeding to the dynamic setting of stochastic processes, we
briefly review what we shall need in a static setting.
Probability Spaces [Kol].

To describe a ‘random experiment’ - a situation generating randomness -
we need:
a sample space Ω, representing the set of all possible outcomes (each individ-
ual outcome ω is a sample point); certain distinguished subsets of Ω, called
events, for which a probability

P (A) = P ({ω : ω ∈ A})

is defined. If A, B are events, we need sets such as A ∪ B, A ∩ B, A \ B
to be events; if A1, A2, . . . are events,

∪n
r=1 Ar is an event by above, and we

further assume
∪∞

n=1 An is also an event. The class F of events is thus closed
under countable set-theoretic operations, and is called a σ-field (sigma-field:
S ↔ Summe = sum, union in German). Note that ∅ (= A \ A) ∈ F , and Ω
(= ∅c) ∈ F .

We need a set-function P defined in F (so that P (A) is defined for each
event A ∈ F), satisfying

P (∅) = 0, P (Ω) = 1;
P (A) ≥ 0;
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P (∪n
1Ar) =

∑n
1 P (Ar) for Ai ∈ F disjoint (finite additivity),

which we shall strengthen to
P (∪∞

1 An) =
∑∞

1 P (An) for An ∈ F disjoint (countable additivity).
Such a P is called a probability measure, and such a triple (Ω,F ,P) is called
a probability space.
Random Variables and the σ-Fields they Generate.

The σ-field generated by a class of sets is the smallest s-field containing
them (or, the intersection of all σ-fields containing them).

A random variable X is a measurable function X : Ω → R - that is, a
function such that for each x ∈ R, {ω : X(ω) ≤ x} or {X ≤ x} ∈ F (is an
event), and so has a probability P (X ≤ x) defined. The collection of these
probabilities as x varies is called the distribution function (distribution, law)
of X. So:

X is a random variable (rv) iff its distribution function is defined.
The σ-field generated by the events {X ≤ x}, ∀x ∈ R (equivalently,

{X ∈ I} for all intervals I, or {X ∈ B} for all ‘Borel sets’ B (the Borel sets
form the σ-field generated by the intervals) is called the σ-field generated by
X, σ(X).
Interpretation: σ(X) represents the information contained in X, or ‘what we
know when we know X’.
Justification. By a theorem of Doob, for random variables X, Y ,

σ(X) ⊂ σ(Y ) iff Y is a (measurable) function of X, Y = f(X).
For, applying a function loses information in general (no loss iff the function
is injective, so has an inverse, and we can go back by applying the inverse
function).
Filtrations. Now we feed in time t ≥ 0, discrete (t = 1, 2, . . . - we usually
then write n for t) or continuous. As time progresses, we learn more. Write
Ft for the σ-field representing our knowledge at time t (Ft will usually be
the σ-field generated by all random variables observed by time t). Then

s ≤ t ⇒ Fs ⊂ Ft :

{Ft : t ≥ 0} is an increasing family of σ-fields, called a filtration. With the
probability space (Ω,F , P ) augmented by the filtration, we have a filtered
probability space or stochastic basis - so called because it provides an adequate
basis on which to define a stochastic process.
Stochastic Processes. A stochastic process X = {Xt : t ≥ 0} (or {X(t) : t ≥
0}) on a stochastic basis as above is a family Xt of random variables on the
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probability space such that for each t, Xt is Ft-measurable. We say that X
is adapted to the filtration. Often Ft = σ{Xs : s ≤ t}, the natural filtration
of X. Any process is adapted to its natural filtration.
Path Properties.

We will only need to look at stochastic processes X whose paths - the
random function t 7→ Xt = Xt(ω) or X(t, ω) - have some regularity, a.s. (two
processes whose finite- dimensional distributions are the same are said to be
versions of each other, and naturally we prefer to work with as regular a
version as possible). Sometimes one has continuous paths (as with Brownian
motion, Ch. 3). One will usually have paths which are right-continuous
with left limits (RCLL), or in French (since we owe much of this to P.-A.
Meyer and the French, particularly Strasbourg, school), continu à droite,
limite à gauche (càdlàg). In important special cases, the paths are jump-
functions, that change only at jump discontinuities: ∆X = Xt −Xt− (using
the càdlàg property of paths), so Xt = X0 +

∑
0<s≤t∆Xs. There can be at

most countably many jumps in such sums, but some processes we shall meet
jump infinitely often in finite time (in consequence, it is impossible to draw
their paths accurately!).

An exception to our usually working with càdlàg processes arises when
we deal with stochastic integrals,

∫ t
0 HsdXs (Ch. 4) with H, X stochastic

processes. For reasons which will emerge later, integrands H are taken left-
continuous with right- limits, continu à gauche, limite à droite or càglàd. For
emphasis:

Integrators: càdlàg,
Integrands: càglàd.

Conditional Expectations.
In elementary probability, with X, Y discrete random variables, starting

with the joint distribution of (X, Y ), we can form the conditional distribu-
tion of one given the other, and so the conditional expectation of one given
the other (when the - ordinary - expectation exists). Similarly when (X, Y )
has a joint density (replace sums by integrals). We need a general framework
containing both, and more.

Let A be a σ-field (as before, A represents an amount of information, or
partial knowledge), A ⊂ F . As before, call X A-measurable if {X ≤ x} ∈ A
for all x (as A is smaller than F , this is a stronger restriction than F -
measurability, which we abbreviate to measurability).
Definition (Kolmogorov, 1933 [Kol]).

For a random variable X with E|X| < ∞, the conditional expectation of
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X given A is the A-measurable random variable, written E(X|A), such that∫
AXdP =

∫
AE(X|A) dP ∀A ∈ A, a.s. (∗).

Note. 1. If Q(A) :=
∫
A X dP (A ∈ A), Q is a measure (non-negative,

σ- additive set-function) if X ≥ 0, and a signed measure in general. If
P (A) = 0, Q(A) = 0, ∀A ∈ A. Then Q is called absolutely continuous w.r.t.
P , Q << P . By the Radon-Nikodým Theorem (which we quote from mea-
sure theory), Q has the form Q(A) =

∫
A Y dP for some A-measurable Y .

2. Kolmogorov’s definition (∗) of conditional expectation is rightly called by
David Williams [Wil91] ‘the central definition of modern probability theory’.
It is important but non-obvious, and reveals its value in its properties and
ease of handling in proofs.
Properties.
1. For A the trivial σ-field, containing only ∅ and Ω - ‘knowing nothing’),
E(X|A) = EX.
Proof. For A = ∅, both sides of (∗) are 0. For A = Ω, both sides are∫
Ω XdP = EX.
2. For A = F (‘knowing everything’), E(X|F) = X.
Proof. Now E(X|F) has to integrate like X over every set A (∈ F), and this
forces E(X|F) to be X a.s.
3. If A ⊂ B,

E[E(X|A)|B] = E(X|A),
E[E(X|B)|A] = E(X|A)

(iterated conditional expectations, or tower property, or coarse-averaging
property). We omit the proof (an excellent exercise - recommended!) for
brevity; see e.g. [Wil91] or [B-K98].
Interpretation: the coarser (smaller) σ-field rubs out the effect of the larger
(finer) one, either way round.
4 (Conditional Mean Formula). E[E(X|A)] = EX.
Proof: Take A the trivial σ-field above, use (1), and then write A for B.
5. If X is A-measurable,

E(XY |A) = X E(Y |A)
(‘taking out what is known’). Interpretation: as X is A-measurable, given A
we know X. So X now counts as a constant, and can be taken out through
expectations (or integral signs).
6. If X is independent of A - that is, if {X ≤ x} and A are independent
events for all x ∈ R and A ∈ A - E(X|A) = X.
Interpretation: independence means that information in A is irrelevant to
X, and so the conditioning has no effect.
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Note. Take B = A in (3): E[E(X|A)|A] = E(X|A). So E[.|A] is idempo-
tent. It is also linear. So it is a projection. We can (and should) think of
E[.|A] as projecting onto what we know given A. This point of view enables
us to think geometrically, as in Euclidean space - or in Hilbert space (and
we will be working in Hilbert space with the square-integrable martingales
below and in Ch. 2, 3).

Conditional expectation also has the properties one might expect of an
integral - linearity and positivity - and conditional forms of the monotone
and dominated convergence theorems, Fatou’s lemma, Jensen’s inequality
etc. hold. For details, see e.g. [Wil91].

In statistics, conditional expectations corresponds to regression - a re-
gression function is a conditional mean E(Y |X = x). Furthermore, handling
sufficiency - particularly minimal sufficiency - rigorously needs the machin-
ery above. So this is not merely mathematical abstraction, but necessary
tools for the statistician!
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