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Lecture 3
Chapter 2. LÉVY PROCESSES
Characteristic Functions. To describe Lévy processes, the language of char-
acteristic functions is essential. We review it briefly.
Definition. The characteristic function (CF) of a rv X is ϕ(u), or ϕX(u), :=
E(eiuX) (u ∈ R). That is, ϕ is the Fourier-Stieltjes transform

∫∞
−∞ eiuxdF (x)

of the distribution function F of X, or the Fourier transform
∫∞
−∞ eiuxf(x)dx

of the density f of X, when this exists.
Properties.
1. The CF always exists. For, |eiuX | = 1 (u, X real). So |E(eiuX)| ≤
E|eiuX | = E1 = 1. So |ϕ(u)| ≤ 1: the integral/expectation defining ϕ always
converges (absolutely).
2. The CF is (uniformly) continuous.
Proof.

|ϕ(t+ u)− ϕ(u)| = |E(eitX .eiuX)− E(eiuX)|
= |EeiuX(eitX − 1)|
≤ E|eiuX(eitX − 1)|
= E|eitX − 1|
→ 0 (t → 0),

by Lebesgue’s dominated convergence theorem (which we quote from measure
theory).
3. The CF determines the distribution uniquely. This is the uniqueness
theorem for CFs (or Fourier-Stieltjes transforms), which we quote. So taking
CFs loses no information.
4. Continuity Theorem (Lévy). If ϕn, ϕ are CFs, of distributions Fn, F ,
(i) If Fn → F in distribution, ϕn(u) → ϕ(u) (n → ∞) for all u ∈ R, uniformly
on compact u-sets.
(ii) If conversely ϕn(u) converges to a limit ϕ(u) which is continuous at zero,
then this limit is a CF, of F say, and the corresponding distributions converge:
Fn → F in distribution.
5. Moments. If µk := E(Xk) exists (i.e. if E|X|k < ∞), then ϕ(u) =∑k

j=0(iu)
jµj/j! + o(uk) as u → 0.

6. Convolutions. If X, Y are independent,

ϕX+Y (u) = ϕX(u).ϕY (u).
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Proof. If X, Y are independent, so are eiuX , eiuY . So

ϕX+Y (u) = E(eiu(X+Y ))

= E(eiuX .eiuY )

= E(eiuX).E(eiuY )

by the Multiplication Theorem. So the RHS is ϕX(u).ϕY (u).
Examples. 1. N(0, 1). Here

f(x) =
1√
2π

e−
1
2
x2

, ϕ(u) =
1√
2π

∫
e−

1
2
x2

.eiuxdx = e−
1
2
u2

.

Proof. First, replace iu (u real) by u (u real). Then the RHS is

1√
2π

∫
exp{−1

2
(x2 − 2ux)}dx =

1√
2π

∫
exp{−1

2
(x− u)2}.e

1
2
u2

dx.

Take out e
1
2
u2
. The remaining integral is 1 (normal density integral). So

1√
2π

∫
e−

1
2
x2

.euxdx = e
1
2
u2

, (u ∈ R).

Replacing u by iu gives the result formally. This is in fact valid by analytic
continuation, which we quote from Complex Analysis.
1a. N(µ, σ2).

f(x) =
1√
2πσ

exp{−1

2
(x− µ)2/σ2}, ϕ(u) = exp{iµu− 1

2
σ2u2}.

Proof. X = µ+ σY with Y N(0, 1).
2. Cauchy.

f(x) =
1

π(1 + x2)
, ϕ(u) = e−|u|.

There are two ways to show this:
(a) Directly, by contour integration, Cauchy’s Residue Theorem and Jordan’s
Lemma from Complex Analysis,
(b) Via f(x) = 1

2
e−|x| ↔ ϕ(u) = 1/(1 + u2) (proof: integrate by parts twice),

and the Fourier Integral Theorem (which again we quote).
Note. Unlike the example above, here we cannot use analytic continuation:
the CF here is about as far from being analytic as it could be.
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3. Poisson, P (λ). f(k) = e−λλk/k!, k = 0, 1, 2, . . . (λ > 0).
ϕ(u) =

∑∞
k=0 e

−λλkeiuk/k! = exp{−λ+ λeiu} = exp{−λ(1− eiu)}.
3a. Compound Poisson, CP (λ, F ). Here X1, X2, . . . are independent and
identically distributed (iid) with law F and CF ϕ, N is Poisson P (λ) indepen-
dent of (Xn), and S is the ‘random sum’ S = X1+ . . .+XN . Then S has CF
E(eiuS) = E(eiu(X1+...+XN )). Conditioning onN , this is

∑∞
k=0 E(eiu(X1+...+XN )|N =

k)P (N = k) =
∑∞

k=0 e
−λ λk

k!
.Eiu(X1+...+Xk), which is

∑∞
k=0 e

−λ λk

k!
ϕ(u)k by the

convolution property. The RHS is exp{−λ + λϕ(u)} = exp{−λ(1 − ϕ(u))}
(P (λ) is the special case F = δ1, ϕ(u) = eiu).
Infinite Divisibility.

For N(µ, σ2), the CF is

ϕ(u) = exp{iµu− 1

2
σ2u2} = [exp{iµu

n
− 1

2

σ2

n
u2}]n (n = 1, 2, . . .).

The RHS is the CF of the sum of n independent copies of N(µ/n, σ2/n).
For Cauchy, the CF is

ϕ(u) = e−|u| = [e−|u|/n]n (n = 1, 2, . . .).

The RHS is the CF of the sum of n independent random variables, each a
(standard) Cauchy divided by n.

For CP (λ, F ), the CF is

ϕ(u) = exp{−λ(1− ϕ(u))} = [exp{−(λ/n)(1− ϕ(u))}]n, (n = 1, 2, . . .),

the CF of the sum of n independent CP (λ/n, F )s.
In each case, we regard the distribution, or CF, as being ‘divided into n

pieces’ (convolution factors), for each n = 1, 2, . . ., in brief as being infinitely
divisible:
Definition. A random variable X with distribution F and CF ϕ is infinitely
divisible (i.d.) if for every n = 1, 2, . . ., ϕ can be written as ϕ(u) = [ϕn(u)]

n

for some CF ϕn.
The Lévy-Khintchine Formula.

The form of the general infinitely-divisible distribution was studied in the
1930s by several people (including Kolmogorov and de Finetti). The final
result, due to Lévy and Khintchine, is expressed in CF language - indeed,
cannot be expressed otherwise.

To describe the CF of the general i.d. law, we need three components:
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(i) a real a (called the drift, or deterministic drift),
(ii) a non-negative σ (called the diffusion coefficient, or normal component,
or Gaussian component),
(iii) a (positive) measure µ on R (or R \ {0}) for which∫ ∞

−∞
min(1, |x|2)µ(dx) < ∞,

that is, ∫
|x|<1

|x|2µ(dx) < ∞,
∫
|x|≥1

µ(dx) < ∞,

called the Lévy measure.

THEOREM (Lévy-Khintchine Formula, L-K formula, L-K). A func-
tion ϕ is the characteristic function of an infinitely divisible distribution iff
it has the form

ϕ(u) = exp{−Ψ(u)} (u ∈ R),

where

Ψ(u) = iau+
1

2
σ2u2 +

∫
(1− eiux + iuxI(|x| < 1))µ(dx) (L−K)

for some real a, σ ≥ 0 and Lévy measure µ.

Examples.
1. N(µ, σ2). Here a = 0, µ = 0.
2. CP (λ, F ). Here σ = 0, µ has finite total mass (far from true in general!),
λ say, and µ = λF . Then

∫ 1
−1 |x|dµ(x) < ∞, and a = −

∫ 1
−1 xµ(dx).

3. Cauchy. See below (under ‘Stable laws’).

The Central Limit Problem.
Recall the classical Central Limit Theorem (CLT). If X1, X2, . . . are iid with
mean µ and variance σ2, Sn =

∑n
1 Xk, then (Sn − nµ)/(σ

√
n) is asymptoti-

cally standard normal:

P
(Sn − nµ

σ
√
n

≤ x
)
→ Φ(x) :=

1√
2π

∫ x

−∞
e−

1
2
y2dy (n → ∞) ∀x ∈ R.

Exercise.
1. Prove the simpler Weak Law of Large Numbers (WLLN): If X1, X2, . . .
are iid with mean µ, Sn =

∑n
1 Xk,

Sn/n → µ in probability (n → ∞)
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by CFs (expand the CF ϕ(u) in a Taylor series as far as the u term).
2. Prove the CLT by CFs (expand ϕ(u) as far as the u2 term).

The CLT can be much generalized. Suppose for each n = 1, 2, . . . we
have independent random variables Xn1, Xn2, . . . , Xn,kn , so {Xnk : 1 ≤ k ≤
kn, n = 1, 2, . . .} forms a ‘triangular array’, and the array is ‘asymtotically
negligible’, in that

∀ϵ > 0, P (max
k

|Xnk| > ϵ) → 0 (n → ∞),

then the possible limit laws of row-sums

Sn := Xn1 + . . .+Xn,kn

of such arrays are exactly the infinitely-divisible laws as described by (L-K).
For proof, see e.g. [Gn-K], [F].
Self-Decomposability. In the central-limit problem, we used triangular - two-
suffix - arrays (Xnk), and obtained the infinitely-divisible laws as limits. If
we specialise to one-suffix arrays - sequences Xn of independent (not neces-
sarily identically distributed) random variables - a subclass of the class I of
infinitely-divisible laws is obtained, called the class of self-decomposable laws,
SD. The name arises because the class SD is the class whose CFs ϕ(u) have
the property that, for each ρ ∈ (0, 1),

ϕ(u) = ϕ(ρu).ϕρ(u),

where ϕρ is again a CF. Thus SD ⊂ I, and the Lévy measures µ of the SD
laws are those which are absolutely continuous, with density k(x)/|x| where
k(x) ↑ on (−∞, 0), ↓ on (0,∞) (self-decomposable laws are also called laws
of Lévy’s class L). For proofs and background, see e.g. [Sat], §15, §17. We
shall return to the class SD in Chapter 5.
Stability. Suppose we now restrict to identical distribution as well as inde-
pendence in SD above. That is, we seek the class of limit laws of random
walks Sn =

∑n
1 Xk with (Xn) iid - after an affine transformation (centring

and scaling) - that is, for all limit laws of (Sn − an)/bn. It turns out that the
class of limit laws so obtained is the same as the class of laws for which Sn has
the same type as X1 - i.e. the same law to within an affine transformation,
or a change of location and scale. Thus the type is ‘stable’ (invariant, un-
changed) under addition of independent copies, whence such laws are called
stable. They form the class S:

S ⊂ SD ⊂ I.
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It turns out that this class of stable laws can be described explicitly by
parameters - four in all, of which two (location and scale, specifying the law
within the type) are of minor importance, leaving two essential parameters,
called the index α (α ∈ (0, 2]) and the skewness parameter β (β ∈ [−1, 1]).
To within type, the Lévy exponent is

Ψ(u) = |u|α(1− iβsgn(u) tan
1

2
πα)

for α ̸= 1 (0 < α < 1 or 1 < α ≤ 2) and

Ψ(u) = |u|(1 + iβsgn(u) log |u|)

if α = 1. The Lévy measure is absolutely continuous, with density of the
form

µ(dx) = c+dx/x
1+α (x > 0), c−dx/|x|1+α (x < 0),

with c+, c− ≥ 0 and
β = (c+ − c−)/(c+ + c−).

For proof, see [Gn-K], [F], XVIII.6, or [Bre], §§9.8-11.
The case α = 2 (for which β drops out) gives the normal/Gaussian case,

already familiar.
The case α = 1 and β = 0 gives the (symmetric) Cauchy law above. The

case α = 1, β ̸= 0 gives the asymmetric Cauchy case, which is awkward, and
we shall not pursue it.

From the form of the Lévy exponents of the remaining stable CFs (where
the argument u appears only in |u|α and sgnu), we see that, if Sn = X1 +
. . .+Xn with Xi independent copies,

Sn/n
1/α = X1 in distribution (n = 1, 2, . . .).

This is called the scaling property of the stable laws; those (all except the
asymmetric Cauchy) that possess it are called strictly stable.

The stable densities do not have explicit closed forms in general, only
series expansions. The normal and (symmetric) Cauchy densities are known
(above), as is one further important special case:
Lévy’s density. Here α = 1/2, β = +1. One can check that for each a,

f(x) =
a√
2πx3

exp{−1

2
a2/x) =

a

x3/2
ϕ(a/

√
x) (x > 0)
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has Laplace transform exp(−a
√
2s) (s ≥ 0); see [R-W1] §I.9 for proof. This

is the density of the first-passage time of Brownian motion (below and Ch.
3) over a level a > 0, as we shall see in greater generality in Ch. 4.

The other remarkable case is that of α = 3/2, β = 0, studied by the Dan-
ish astronomer J. Holtsmark in 1919 in connection with the gravitational
field of stars - this before Lévy’s work on stability. The power 3/2 comes
from 3 dimensions and the inverse square law of gravity.
Exercise. Show that the Lévy measure above does indeed give the symmet-
ric Cauchy law in the case α = 1, β = 0. (Use symmetry to show that
the relevant integral is a function of |u| only, so we can take u > 0. Now
note that the integral is real. Differentiate under the integral sign, and use∫∞
0 x−1 sinxdx = π/2.)
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