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Lecture 5
Chapter 3. GAUSSIAN-BASED MODELS
Brownian Motion.
Definition. Brownian motion (BM) on R is the process B = (Bt : t ≥ 0)
such that:
(i) B0 = 0;
(ii) B has stationary independent increments (so B is a Lévy process);
(iii) B has Gaussian increments: for s, t ≥ 0, Bt+s −Bs ∼ N(0, t);
(iv) B has continuous paths: t 7→ Bt is continuous (t 7→ B(t, ω) is continuous
for all ω ∈ Ω).
[The path-continuity in (iv) can be relaxed by assuming it only a.s.; we
can then get continuity by excluding a suitable null-set from our probability
space.]

The fact that Brownian motion so defined exists is quite deep, and was
first proved by Norbert Wiener (1894-1964) in 1923. In honour of this, Brow-
nian motion is also known as theWiener process, and the probability measure
generating it - the measure W on C[0, 1] (one can extend to C[0,∞)) by

W (A) = P (B. ∈ A) = P ({t 7→ Bt(ω)} ∈ A)

for all Borel sets A ∈ C[0, 1] is called Wiener measure.
Covariance. Before addressing existence, we first find the covariance func-
tion. For s ≤ t, Bt = Bs + (Bt −Bs), so as EBt = 0,

cov(Bs, Bt) = E(BsBt) = E(B2
s ) + E[Bs(Bt −Bs)].

The last term is E(Bs)E(Bt − Bs) by independent increments, and this is
zero, so

cov(Bs, Bt) = E(B2
s ) = s (s ≤ t) : cov(Bs, Bt) = min(s, t).

A Gaussian process (one whose finite-dimensional distributions are Gaussian)
is specified by its mean function and its covariance function, so among cen-
tred (zero-mean) Gaussian processes, the covariance function min(s, t) serves
as the signature of Brownian motion.
Finite-Dimensional Distributions. For 0 ≤ t1 < . . . < tn, the joint law of
X(t1), X(t2), . . . , X(tn) can be obtained from that ofX(t1), X(t2)−X(t1), . . . , X(tn)−
X(tn−1). These are jointly Gaussian, hence so are X(t1), . . . , X(tn): the
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finite-dimensional distributions aremultivariate normal. Recall that the mul-
tivariate normal law in n dimensions, Nn(µ,Σ) is specified by the mean vector
µ and the covariance matrix Σ (non-negative definite) by its CF:

E exp{iuTX} = exp{iuTX− 1

2
uTΣu},

and when Σ is positive definite (so non-singular), the joint density is given
by Edgeworth’s theorem:

f(x) =
1

(2π)
1
2
n|Σ| 12

. exp{−1

2
(x− µ)TΣ−1(x− µ)}.

So to check the finite-dimensional distributions of BM - stationary inde-
pendent increments with Bt ∼ N(0, t) - it suffices to show that they are
multivariate normal with mean zero and covariance cov(Bs, Bt) = min(s, t)
as above.
Construction of BM.

It suffices to construct BM for t ∈ [0, 1]). This gives t ∈ [0, n] by dilation,
and t ∈ [0,∞) by letting n → ∞.

First, take L2[0, 1], and any complete orthonormal system (cons) (ϕn) on
it. Now L2 is a Hilbert space, under the inner product

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx (or

∫
fg),

so norm ∥f∥ := (
∫
f2)1/2). By Parseval’s identity,

∫ 1

0
fg =

∞∑
n=0

⟨f, ϕn⟩⟨g, ϕn⟩

(where convergence of the series on the right is in L2, or in mean square:
∥f −∑n

0 ⟨f, ϕk⟩ϕk∥
→ 0 as n → ∞). Now take, for s, t ∈ [0, 1],

f(x) = I[0,s](x), g(x) = I[0,t](x).

Parseval’s identity becomes

min(s, t) =
∞∑
n=0

∫ 2

0
ϕndx

∫ t

0
ϕn(x)dx.
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Now take (Zn) independent and identically distributed N(0, 1), and write

Bt =
∞∑
n=0

Zn

∫ t

0
ϕn(x)dx.

This is a sum of independent random variables. Kolmogorov’s theorem on
random series (‘three- series theorem’) says that it converges a.s. if the sum
of the variances converges. This is

∑∞
n=0(

∫ t
0 ϕn(x)dx)

2, = t by above. So the
series above converges a.s., and by excluding the exceptional null set from
our probability space (as we may), everywhere.
The Haar System. Define

H(t) = 1 on [0, 1
2
), −1 on [1

2
, 1], 0 else.

Write H0(t) ≡ 1, and for n ≥ 1, express n in dyadic form as n = 2j + k for
a unique j = 0, 1, . . . and k = 0, 1, . . . , 2j − 1. Using this notation for n, j, k
throughout, write

Hn(t) := 2j/2H(2jt− k)

(so Hn has support [k/2j, (k+1)/2j]). So if m,n have the same j, HmHn ≡ 0,
while if m,n have different js, one can check that HmHn is 2(j1+j2)/2 on half
its support, −2(j1+j2)/2 on the other half, so

∫
HmHn = 0. Also H2

n is 2j on
[k/2j, (k + 1)/2j], so

∫
H2

n = 1. Combining:∫
HmHn = δmn,

and (Hn) form an orthonormal system, called the Haar system. For com-
pleteness: the indicator of any dyadic interval [k/2j, (k + 1)/2j] is in the
linear span of the Hn (difference two consecutive Hns and scale). Linear
combinations of such indicators are dense in L2[0, 1]. Combining: the Haar
system (Hn) is a cons in L2[0, 1].
The Schauder System.

We obtain the Schauder system by integrating the Haar system. Consider
the triangular function (or ‘tent function’)

∆(t) := 2t (0 ≤ t ≤ 1

2
), 2(1− t) (

1

2
≤ t ≤ 1), 0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and define the nth Schauder function ∆n

by
∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).
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Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). We see that∫ t

0
H(u)du =

1

2
∆(t),

and similarly ∫ t

0
Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
.2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a cons on L2[0, 1].

THEOREM (Paley-Wiener-Zygmund, 1932. For (Zn)
∞
0 independent

N(0, 1) random variables, λn, ∆n as above,

Bt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process B = (Bt : t ∈ [0, 1]) is Brow-
nian motion.

LEMMA. For Zn independent N(0, 1),

|Zn| ≤ C
√
log n ∀n ≥ 2,

for some random variable C < ∞ a.s.

Proof. For x > 1,

P (|Zn| ≥ x) =
2√
2π

∫ ∞

x
e−

1
2
u2

du ≤
√
2/π

∫ ∞

x
ue−

1
2
u2

du =
√
2/πe−

1
2
x2

.

So for any a > 1,

P (|Zn| >
√
2a log n) ≤

√
2/π exp(−a log n) =

√
2/π.n−a.

Since
∑

n−a < ∞ for a > 1, the Borel-Cantelli lemma gives

P (|Zn| >
√
2a log n for infinitely many n) = 0.
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So

C := sup
n≥2

|Zn|√
log n

< ∞ a.s.

Proof of the Theorem.
1. Convergence. Choose J and M ≥ 2J ; then

∞∑
n=M

λn|Zn|∆n(t) ≤ C
∞∑
M

λn

√
log n∆n(t).

The right is majorized by

C.
∞∑
J

2j−1∑
k=0

1

2
.2−j/2

√
j + 1∆2j+k(t)

(perhaps including some extra terms at the beginning, using n = 2j + k <
2j+1, log n ≤ (j + 1) log 2, and ∆n(.) ≥ 0, so the series is absolutely conver-
gent). In the inner sum, only one term is non-zero (t can belong to only one
dyadic interval [k/2j, (k + 1)/2j)), and each ∆n(t) ∈ [0, 1]. So

LHS ≤ C
∞∑
j=J

1

2
.2−j/2

√
j + 1 ∀t ∈ [0, 1],

and this tends to 0 as J → ∞, so as M → ∞. So the series
∑

λnZn∆n(t) is
absolutely and uniformly convergent, a.s. Since continuity is preserved under
uniform convergence and each ∆n(t) (so each partial sum) is continuous, Bt

is continuous in t.
2. Covariance. By absolute convergence and Fubini’s theorem,

EBt = E
∞∑
0

λnZn∆n(t) =
∑

λn∆n(t).EZn =
∑

0 = 0.

So the covariance is

E(BsBt) = E[
∑
m

Zm

∫ s

0
ϕm.

∑
n

Zn

∫ t

0
ϕn] =

∑
m

∑
n

E[ZmZn]
∫ s

0
ϕm

∫ t

0
ϕn,

or as E[ZmZn] = δmn,

∑
n

∫ s

0
ϕm

∫ t

0
ϕn = min(s, t),
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by the Parseval calculation above.
3. Joint Distributions. Take t1, . . . , tm ∈ [0, 1], we have to show that
(B(t1), . . . , B(tn)) is multivariate normal, with mean vector 0 and covari-
ance matrix (min(ti, tj)). The multivariate CF is

E exp{i
m∑
j=1

ujB(tj)} = E exp{i
m∑
j=1

uj

∞∑
n=0

λnZn∆n(t)},

which by independence of the Zn is

∞∏
n=0

E exp{iλnZn

m∑
j=1

uj∆n(tj)}.

Since each Zn is N(0, 1), the RHS is

∞∏
n=0

exp{−1

2
λ2
n(

m∑
j=1

uj∆n(tj))
2} = exp{−1

2

∞∑
n=0

λ2
n(

m∑
j=1

uj∆n(t))
2}.

The sum in the exponent on the right is

∞∑
n=0

λ2
n

m∑
j=1

m∑
k=1

ujuk∆n(tj)∆n(tk) =
m∑
j=1

m∑
k=1

ujuk

∞∑
n=0

∫ tj

0
Hn(u)du.

∫ tk

0
Hn(u)du,

giving
m∑
j=1

m∑
k=1

ujuk min(tj, tk),

by the Parseval calculation, as (Hn) are cons. Combining,

E exp{i
m∑
j=1

ujB(tj)} = exp{−1

2

m∑
j=1

m∑
k=1

ujuk min(tj, tk)}.

This says that (B(t1), . . . , B(tn)) is multinormal with mean 0 and covariance
function min(tj, tk) as required. This completes the construction of BM.
Wavelets. The Haar system (Hn), and the Schauder system (∆n) obtained by
integration from it, are examples of wavelet systems. The original function,
H or ∆, is a mother wavelet, and the ‘daughter wavelets’ are obtained from
it by dilation and translation. The expansion of the Theorem is the wavelet
expansion of BM with respect to the Schauder system (∆n). For any f ∈
C[0, 1], we can form its wavelet expansion

f(t) =
∞∑
n=0

cn∆n(t),
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with wavelet coefficients cn. Here cn are given by

cn = f(
k + 1

2

2j
)− 1

2
[f(

k

2j
) + f(

k + 1

2j
)].

This is the form that gives the ∆n(.) term its correct triangular influence,
localized on the dyadic interval [k/2j, (k+1)/2j]. Thus for f BM , cn = λnZn,
with λn, Zn as above. The wavelet construction of BM above is, in modern
language, the classical ‘broken-line’ construction of BM due to Lévy in his
book of 1948 - the Lévy representation of BM using the Schauder system,
and extended to general cons by Cieselski in 1961; see [McK], §1.2 for a
textbook account. The account above is from [Ste]. The earliest expansion
of BM - ‘Fourier-Wiener expansion’ - used the trigonometric cons (Paley &
Zygmund 1930-32, Paley, Wiener & Zygmund 1932; see [Kah], Preface and
§16.3.
Note. We shall see that Brownian motion is a fractal, and wavelets are a
useful tool for the analysis of fractals more generally. For background, see
e.g. [Hol], §4.4.
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