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This talk is based on joint work with Akihiko
Inoue (Hiroshima U.) and Yukio Kasahara (Hokkaido
U.). See my surveys
Szegö’s theorem and its probabilistic descen-
dants, arXiv:1108.0379,
Multivariate prediction and matrix Szegö the-
ory, arXiv:1203:0962;
BIK, An explicit representation of Verblunsky
coefficients, Statistics and Probability Letters
82.2 (2012), 403-410.
Background areas: Time series in Statistics;
Hardy spaces in Analysis. See e.g.
N. K. Nikolskii, Operators, functions and sys-
tems: an easy reading. Vol. 1: Hardy, Hankel
and Toeplitz; Vol 2, Model operators and sys-
tems, AMS, 2002.



Abstract

The talk concerns prediction theory for sta-

tionary stochastic processes in discrete time,

in one dimension or (motivated by financial

portfolios) many. The basic tool is orthog-

onal polynomials on the unit circle (OPUC),

or its recent multivariate extension (MOPUC).

The partial autocorrelation function (PACF),

or Verblunsky coefficients, and the Levinson-

Durbin algorithm, play key roles.



Setting

Prediction theory for a stationary stochastic

process X = (Xt) in discrete time.

Stationarity is a strong assumption!

C. W. J. (Sir Clive) Granger (1934-2009).

Scalar case: orthogonal polynomials on the

unit circle (OPUC).

Matrix case (MOPUC): Xt a d-vector (e.g., a

portfolio in math. finance – Markowitzian di-

versification).

There are two main themes.

1. Strong and weak conditions – corresponding

to the strong and weak forms of Szegö’s limit

theorem; needed to exclude long memory (in

time), or long-range dependence (in space).

2. A hierarchy: strong, weak and intermediate

conditions. The Goldilocks Principle: not too

hot/hard/high/..., not too cold/soft/low/...,

but just right.



The Kolmogorov Isomorphism Theorem

Let X = (Xn : n ∈ Z) be a discrete-time, zero-

mean, (wide-sense) stationary stochastic pro-

cess, with autocovariance function γ = (γn),

γn = E[XnX0] (w.l.o.g., take the variance as

1, so (auto)covariance = (auto)correlation).

Let H be the Hilbert space spanned by X =

(Xn) in the L2-space of the underlying proba-

bility space, with inner product (X,Y ) := E[XY ]

and norm ∥X∥ := [E(|X|2)]1/2. Write T for the

unit circle, the boundary of the unit disc D,

parametrised by z = eiθ; unspecified integrals

are over T .

Kolmogorov Isomorphism Theorem, KIT.

There is a process Y on T with orthogonal

increments and a probability measure µ on T

with

(i) Xn =
∫
einθdY (θ);

(ii) E[dY (θ)2] = dµ(θ).



(iii) The autocorrelation function γ then has

the spectral representation

γn =
∫
e−inθdµ(θ).

(iv) One has the Kolmogorov isomorphism be-

tween H (the time domain) and L2(µ) (the

frequency domain) given by

Xt ↔ eit., (KIT )

for integer t (as time is discrete).

(i), (ii): Cramér representation of 1942 (Doob

X.4; Cramér and Leadbetter 7.5).

(iii) (Herglotz, 1911) follows from (i) and (ii)

(Doob; Brockwell & Davis 4.3).

(iv): Kolmogorov, 1941.

This rests on Stone’s theorem of 1932 (spec-

tral representation of groups of unitary trans-

formations of linear operators on Hilbert space);

see Doob 636-7, Dunford & Schwartz X.5 for

spectral theory. //



To avoid trivialities, we suppose in what fol-

lows that µ is non-trivial – has infinite support.

Since for integer t the eitθ span polynomials in

eiθ, prediction theory for stationary processes

reduces to approximation by polynomials. This

is the classical approach to the main result of

the subject, Szegö’s theorem.

We write

dµ(θ) = w(θ)dθ/2π + dµs(θ),

so w is the spectral density (w.r.t. normalized

Lebesgue measure), µs the singular part of µ.

By stationarity,

E[XmXn] = γ|m−n|.

The Toeplitz matrix for X, or µ, or γ, is

Γ := (γij), where γij := γ|i−j|.

Principal minors of Γ: Tn.



Orthogonal Polynomials on the Unit Circle

(OPUC)

Gabor Szegö (1895-1985)
Szegö limit theorem, 1915, Math. Ann.
OPUC, 1920, 1921, MZ
Orthogonal polynomials. AMS Colloquium Pub-
lications 23, 1939 [orthogonal polynomials on
the real line, OPRL; OPUC, Ch. XI]
U. Grenander and G. Szegö, Toeplitz forms
and their applications. U. Calif. Press, 1958
Barry Simon (1946-)
OPUC on one foot, 2005, BAMS [survey]
Orthogonal polynomials on the unit circle. Part
1: Classical theory, Part 2: Spectral theory,
AMS Colloquium Publications 54.1, 54.2, 2005.
The sharp form of the strong Szegö theorem,
2005, Contemporary Math.
Szegö’s theorem and its descendants. Prince-
ton UP, 2011.
A. Inoue, 2000, J. Analyse Math., 2008, PTRF
A. Inoue and Y. Kasahara, 2006, Ann. Stat.



Verblunsky’s theorem and partial autocor-

relation.

H[−n,−1]: subspace of H spanned by {X−n, . . . , X−1}
(finite past at time 0 of length n),

P[−n,−1]: projection onto H[−n,−1] (best linear

predictor of X0 based on the finite past),

P⊥
[−n,−1] := I − P[−n,−1]: orthogonal projection

(P⊥
[−n,−1]X0 := X0 − P[−n,−1]X0 is the predic-

tion error).

For prediction based on the infinite past:

H(−∞,−1]: closed lin. span (cls) of Xk, k ≤ −1,

P(−∞,−1]: corresponding projection, etc.

Hn := H(−∞,n]: (subspace generated by) the

past up to time n

H−∞ :=
∩∞
n=−∞Hn: remote past.

Partial autocorrelation function (PACF):

αn := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0):

correlation between the residuals at times 0, n

resulting from (linear) regression on the inter-

mediate values X1, . . . , Xn−1.

α = (αn)∞n=1.



Unrestricted parametrization of PACF: the only
restrictions on the αn are the obvious ones re-
sulting from their being correlations – |αn| ≤ 1
(or avoiding degeneracy, |αn| < 1): the α fill
out the infinite-dimensional cube.
Statistics: Barndorff-Nielsen & Schou, 1973,
J. Multiv. An., F. L. Ramsey, 1974, Ann. Stat.
Analysis: Samuel Verblunsky, 1935, 1936, JLMS.
By contrast, the correlation function γ = (γ)n
again has each |γn| ≤ 1, but the γ fill out only
part of the inf-dim cube (specified by determi-
nental inequalities).
Szegö recursion (= Levinson-Durbin algorithm).
Let Pn be the orthogonal polynomials on the
unit circle (OPUC) w.r.t. m. Then

Pn+1(z) = zPn(z)− ᾱn+1P
∗
n(z),

where for any polynomial Qn of degree n,

Q∗
n(z) := znQn(1/z̄)

are the reversed polynomials. Herglotz and
Verblunsky theorems:

α ↔ µ ↔ γ.



Weak condition: Szegö’s condition.

Write σ2 for the one-step mean-square predic-

tion error:

σ2 := E[(X0 − E(X0|Xk, k < 0))2].

Call X non-deterministic (ND) if σ > 0, deter-

ministic if σ = 0 (i.e. iff Xn ∈ H−∞ for each n

– the remote past dominates).

Wold decomposition (von Neumann in 1929,

Wold in 1938):

Xn = Un + Vn,

with V deterministic and Un a moving average:

Un = σ
∞∑
0

mjξn−j,

ξj iid N(0,1) (so U absent if σ = 0).

Kolmogorov’s formula (1941):

σ2 = exp(
1

2π

∫
logw(θ)dθ) =: G(µ) > 0, (K)

(µs plays no role; on the right, G(µ) is the

geometric mean of µ. So:



Szegö’s theorem: σ > 0 iff

logw ∈ L1. (Sz)

When also the remote past is trivial –

H−∞ = {0}, i.e. µs = 0

– call X purely non-deterministic, or (PND):

(PND) = (ND) + (µs = 0) = (Sz) + (µs = 0).

Hardy spaces (see e.g. P. L. Duren, Theory
of Hp spaces, AP, 1974). Define the Szegö
function

h(z) := exp(
1

4π

∫
(
eiθ + z

eiθ − z
) logw(θ)dθ) (z ∈ D).

(OF )
Because logw ∈ L1 by (Sz), H := h2 is an
outer function for H1 (whence the name (OF )
above). By Beurling’s canonical factorization
theorem,
(i) h ∈ H2.
(ii) The radial limit

H(eiθ) := lim
r↑1

H(reiθ)



exists a.e., and

|H(eiθ)| = |h(eiθ)|2 = w(θ)

(thus h may be regarded as an ‘analytic square

root’ of w). The following are equivalent:

(i) Szegö condition (Sz) = (ND), i.e. σ > 0;

(ii) PACF α = (αn) ∈ ℓ2. Then

(iii) MA coefficients m = (mn) ∈ ℓ2;

(iv) Szegö function h(z) :=
∑∞

n=0mnzn ∈ H2.

Strong condition 1: Baxter’s theorem

We also have the following stronger equivalent

conditions (Glen Baxter, 1961, 1962, 1963; Si-

mon Vol. 1, Ch. 5):

(i) PACF α ∈ ℓ1 (Baxter’s condition, (B));

(ii) autocorrelation γ ∈ ℓ1, and µ is abs. cts

with continuous positive density:

minθw(θ) > 0.

(iii) MA coefficients m ∈ ℓ1, µs = 0 and µ is ac

with continuous positive density w.



Long-range dependence (LRD)

Physics: spatial LRD, phase transitions.

Statistics: LRD in time; see e.g. Cox’s sur-

vey of 1984 (Selected Papers Vol. 2 (2005),

TS3), or

Jan Beran, Statistics for long-memory processes,

Ch&H, 1994.

There was no precise definition of LRD, but

two leading candidates, both involving the co-

variance γ:

(i) LRD is non-summability: γ /∈ ℓ1.

(ii) LRD is covariance decaying like a power:

γn ∼ c/n1−2d as n → ∞, for some parameter

d ∈ (0,1/2) (d for differencing) and constant

c ∈ (0,∞) (and so
∑

γn = ∞).

Motivated by Baxter’s theorem, one now has

Definition (L. Debowski, 2007, SPL; Inoue,

2008, PTRF): LRD is α /∈ ℓ1.

Note. 1. (ii) above may be generalized to γn

regularly varying, or w(t) regularly varying.

2. Hurst parameter H := d+1/2 ∈ (1/2,1).



3. For d ∈ (0, 12), ℓ(.) slowly varying, the fol-
lowing class of prototypical long-memory ex-
amples is considered in Inoue-Kasahara 2006:

γn ∼ ℓ(n)2B(d,1− 2d)/n1−2d,

mn ∼ ℓ(n)/n1−d,

rn ∼
d sin(πd)

π
.

1

ℓ(n)
.1/n1+d

(r = (rn): autoregressive (AR) coefficients).
4. They also consider FARIMA(p, d, q).

Strong condition 2: strong Szegö condn

This is motivated by two areas of physics.
1. The cepstrum.
J. W. Tukey and collaborators, 1963: distin-
guishing the signature of the underground ex-
plosion in a nuclear weapon test from that of
an earthquake. Used the cepstrum L = (Ln):
Fourier coefficients of logw (cepstrum: spec-
trum + reflection, for echo: hard c). This was



used by Bloomfield in his time-series models

(alternative to Box-Jenkins ARMA(p, q)).

2. The strong Szegö limit theorem, Szegö

(1952):

det Tn

G(µ)n
→ E(µ) := exp{

∞∑
1

kL2
k)} (n → ∞).

Taking logs gives the (weak) Szegö limit the-

orem of 1915:

(logdet Tn)/n → G(µ).

Motivation: Onsager’s work in the two-dimensional

Ising model, and in particular Onsager’s for-

mula, giving the existence of a critical tem-

parature Tc and the decay of the magnetiza-

tion as the temperature T ↓ Tc.

Write H1/2 for the subspace of ℓ2 of sequences

a = (an) with

∥a∥2 :=
∑
n
(1 + |n|)|αn|2 < ∞



(‘1’ on the right to give a norm, or ∥.∥ van-
ishes on the constant functions) – a Sobolev
space (also a Besov space, whence the alter-
native notation B

1/2
2 ). This plays the role here

of ℓ2 for Szegö’s theorem and ℓ1 for Baxter’s
theorem. Note that, although ℓ1 and H1/2 are
close in that a sequence (nc) of powers be-
longs to both or neither, neither contains the
other (consider an = 1/(n logn), an = 1/

√
n if

n = 2k, 0 otherwise).
Ibragimov’s version of the strong Szëgo limit
theorem: if (Sz) = (ND) holds and µs = 0,
then

G(µ) =
∞∏

j=1

(1− |αj|2)−j = exp(
∞∑

n=1

nL2
n)

(all may be infinite). The infinite product con-
verges iff the strong Szegö condition holds:

α ∈ H1/2, (sSz)

or equivalently by above

L ∈ H1/2. (sSz′)



The Golinski-Ibragimov theorem states that,

under (Sz), finiteness forces µs = 0.

Borodin-Okounkov formula (2000; Geronimo

& Case, 1979).

This turns the strong Szegö limit theorem above

from analysis to algebra. In terms of operator

theory and in Widom’s notation, the result is

det Tn(a)

G(a)n
=

det(I −QnH(b)H(c̃)Qn)

det(I −H(b)H(c̃))
,

for a a sufficiently smooth function without

zeros on the unit circle and with winding num-

ber 0. Then a has a Wiener-Hopf factorization

a = a−a+; b := a−a
−1
+ , c := a−1

− a+; H(b), H(c̃)

are the Hankel matrices H(b) = (bj+k+1)
∞
j,k=0,

H(c̃) = (c−j−k−1)
∞
j,k=0, and Qn is the orthog-

onal projection of ℓ2(1,2, . . .) onto ℓ2({n, n +

1, . . .}). By Widom’s formula,

1/det(I −H(b)H(c̃)) = exp{
∞∑

k=1

kL2
k} =: E(a)



(see e.g. Simon 1, Th. 6.2.13), and
QnH(b)H(c̃)Qn → 0 in the trace norm, whence

det Tn(a)/G(a)n → E(a),

the strong Szegö limit theorem.
ϕ-mixing

ϕ(n) := E sup{|P (A|F0
−∞)− P (A)| : A ∈ F∞

n };

ρ(n) := ρ(F0
−∞,F∞

n ),

ρ(A,B) := sup{∥E(f |B)−Ef∥2/∥f∥2 : f ∈ L2(A)}.

Call X ϕ-mixing if ϕ(n) → 0 as n → ∞, ρ-mixing
if ρ(n) → 0.
We quote: ϕ-mixing (regarded here as ‘strong’)
implies ρ-mixing (‘intermediate’ – below). The
spectral characterization for ϕ-mixing is

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the
unit circle and the cepstrum L∗ = (L∗

n) of w∗

satisfies (sSz).



Intermediate conditions (four, in decreasing

order of strength)

1. Complete regularity (or ρ-mixing): ρ-mixing

coefficients ρ(n) → 0. Spectral characteriza-

tion

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the

unit circle and for all ϵ > 0,

log w∗ = rϵ + uϵ + ṽϵ,

where rϵ is continuous, uϵ, vϵ are real and bounded,

and ∥uϵ∥ + ∥vϵ∥ < ϵ (Ibragimov-Rozanov, V.2

Th. 3; cf. Fefferman-Stein decomposition).

Alternatively,

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the

unit circle and

log w∗ = u+ ṽ,



with u, v real and continuous (Sarason; Helson

and Sarason).

2. Positive angle: the Helson-Szegö and Helson-

Sarason conditions.

For subspaces A, B of H, the angle between A

and B is defined as

cos−1 sup{|(a, b)| : a ∈ A, b ∈ B}.

Then A, B are at a positive angle iff this supre-

mum is < 1. X satisfies the positive angle con-

dition, (PA), if for some time lapse k the past

cls(Xm : m < 0) and the future cls(Xk+m :

m ≥ 0) are at a positive angle, i.e. ρ(0) =

. . . ρ(k − 1) = 1, ρ(k) < 1, which we write as

PA(k) (Helson and Szegö, k = 1; Helson and

Sarason, k > 1). Spectral characterization:

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),



where P is a polynomial of degree k − 1 with

its roots on the unit circle and

log w∗ = u+ ṽ,

where u, v are real and bounded and ∥v∥ <

π/2 ([IR] V.2, Th. 3, Th. 4). The Helson-

Szegö condition (PA(1)) coincides with Muck-

enhoupt’s condition A2 in analysis:

sup
I

((
1

|I|

∫
I
w(θ)dθ)(

1

|I|

∫
I

1

w(θ)
dθ)) < ∞, (A2)

where |.| is Lebesgue measure and the supre-

mum is taken over all subintervals I of the unit

circle T . See e.g. Hunt, Muckenhoupt and

Wheeden [HMW]. Reducing PA(k) to PA(1)

(by sampling every kth time point), we then

have complete regularity (ρ(n) → 0) implies

PA(1) = (A2).

3. Pure minimality

Interpolation problem: find best linear inter-

polation of a missing value, X0 say, from the

others. Write H ′
n := cls{Xm : m ̸= n} for the



closed linear span of the values at times other
than n. X is minimal if Xn /∈ H ′

n, purely mini-
mal if

∩
nH ′

n = {0}. Spectral condition for min-
imality is (Kolmogorov in 1941) 1/w ∈ L1 (and
for pure minimality, this + µs = 0). Under min-
imality, the relationship between the moving-
average coefficients m = (mn) and the autore-
gressive coefficients r = (rn) becomes sym-
metrical, and one has the equivalences (i) min-
imal; (ii) AR coefficients r = (rn) ∈ ℓ2; (iii)
1/h ∈ H2.
4. Rigidity; (LM), (CND), (IPF ).
Rigidity; the Levinson-McKean condition.
Call g ∈ H1 rigid if is determined by its phase:

f ∈ H1 (f not identically 0), f/|f | = g/|g| a.e.

implies f = cg for some positive constant c

(Sarason, Nakazi, de Leeuw and Rudin, Levin-
son and McKean). Call the condition that µ

be ac with spectral density w = |h|2 with h2

rigid, or determined by its phase, the Levinson-
McKean condition, (LM).



Complete non-determinism; intersection of past
and future.
(i) complete non-determinism,

H(−∞,−1] ∩H[0,∞) = {0}, (CND)

(ii) the intersection of past and future property,

H(−∞,−1] ∩H[−n,∞) = H[−n,−1] ∀n (IPF )

(CND) ⇔ (IPF ) ⇔ (LM).

First equivalence: Inoue & Kasahara 2006; sec-
ond equivalence: (LM) Kasahara & Bingham,
2012. They are stronger than (PND), itself
stronger than the weak condition (ND) = (Sz).

Multivariate prediction
If X is vector-valued (e.g., the price vector
in a portfolio in math. finance), then µ, α
are matrix-valued, and OPUC becomes ma-
trix OPUC or MOPUC. Most of the above
still goes through; see my sequel Multivari-
ate prediction and matrix Szegö theory ((LM),
CND), (IPF ): work in progress).



Stochastic v. independent v deterministic
If all the Xn are independent, no prediction is
possible: the free case, µ normalised Lebesgue
measure, γn = δn0, αn ≡ 0: a boundary be-
tween our stochastic case and deterministic
chaos (dynamical systems, non-linearity etc.)
Distinguishing these: Lucas Lacasa, visibility
graph, 2008, 2009, 2012.

Non-stationarity. Extensions are possible. Prob-
ability: theory of harmonisable processes (Cramér;
M. M. Rao); KIT: Y. Kakihara, 2001. Statis-
tics: see e.g. Dégerine & Lambert-Lacroix,
JTSA 2002.

Implementation: statistics. PACF estima-
tion (Dégerine et al.); density estimation on
the circle.
Implementation: financial applications. Lots
of good problems – e.g., hedging with options
of different maturities (Andrea Macrina, KCL).


