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1. Pre-BGT

A function f : R→ R+ is regularly varying (RV) if

f (λx)/f (x)→ g(λ) (x →∞) ∀λ > 0 (RV )

for some g . The convergence here is uniform on compact λ-sets in
R+ := (0,∞), for f measurable or Baire (below), but not in
general (UCT). The limit function g is a power, g(λ) ≡ λρ, again
for f measurable/Baire but not in general (Characterization
Theorem). Then ρ is called the index of regular variation, and one
writes f ∈ Rρ. If

f (λx)/f (x)→ 1,

i.e. if ρ = 0, f is called slowly varying, SV, written ` (‘l for lente,
or langsam’). There is a Representation Theorem for ` ∈ R0, and
then each f ∈ Rρ has the form f (x) = xρ`(x).
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The above is the multiplicative form, useful for applications; for
proofs, the additive form is better:

F (x + u)− F (x)→ G (u) (x →∞) ∀u ∈ R. (RV+)

This can be usefully generalized to

[F (x + u)− F (x)]/`(x)→ G (u) (x →∞) ∀u ∈ R (BKdH)

for ` SV (Bojanic-Karamata 1963, de Haan 1970 on).
Regular variation (RV) was introduced by Jovan Karamata
(1902-1967) in 1930 (Mathematica (Cluj)). For References, see
e.g.
Jovan Karamata, Selected papers (ed. V. Maric), Beograd, 2009.
His motivation was a short proof of the Hardy-Littlewood
Tauberian theorem for Laplace transforms: the
Hardy-Litlewood-Karamata theorem, HLK. There was earlier work
by Landau (1911), Valiron (1913), Pólya (1917), Hardy (1924).
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The use of regular variation in probability theory (why we use it!)
is due to G. N. Sakovich in 1956 (Theor. Prob. Appl. Vol. 1).
Earlier results, in which regular variation was not explicit: domain
of attraction for CLT with Gaussian limit (Khinchin, Feller, Lévy in
1935, independently – truncated variance slowly varying); domain
of attraction for CLT with general (inf. div.) limit: Gnedenko
(1939), Doeblin (1940); Gnedenko & Kolmogorov, book, 1949
(Russian), 1954 (English). Validity of weak LLN: truncated mean
slowly varying.
First textbook account with regular variation explicit: Feller, Vol.
II, 1966/1971.
First textbook account of the mathematical theory: Seneta, 1971.
Extensions of the Karamata theory and applications to extreme
value theory (EVT): de Haan, 1970 on.
Monograph account of probabilistic theory and applications to
EVT: Resnick, 1987.
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2. Bingham-Goldie-Teugels (BGT)

[BGT] N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular
variation, CUP, 1987/1989.

Chapters 1, Karamata theory; 2, Extensions; 3, De Haan theory; 4,
Abelian and Tauberian theorems; 5, Mercerian theorems; 6,
Analytic number theory; 7, Complex analysis; 8, Probability theory.
Widely cited, still: MathSciNet, 1,288 (1987) + 333 (1989)
(Google, 489 (1987) + 4,626 (1989)).
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3. (Lebesgue) measure and (Baire) category

A set is meagre (of first (Baire) category) if it is a countable union
of nowhere dense sets, non-meagre (second category) otherwise; A
has the Baire property – ‘is Baire’ – if it is the symmetric
difference of an open set and a meagre set (‘is nearly open’); f has
the Baire property – is Baire – if f −1(G ) is Baire for every open G .
The standard work on measure and category:
[Oxt] J. C. Oxtoby, Measure and category: A survey of the
analogies between topological and measure spaces, 2nd ed., Grad.
Texts in Math. 2, Springer, 1980 (1st ed. 1971).
This explores measure-category duality in depth. This works when
the measure theory is qualitative (is the measure zero or positive?)
rather than quantitative (what is the measure?). So: it goes as far
as the Zero-One Law, but not the Strong Law of Large Numbers.
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4. BGT: The gaps

The book appeared in the series Encyclopedia of Mathematics, and
is sometimes referred to as ‘the encyclopedia’ ! What does it miss?
The foundational gap.
In Ch. 1, measurability suffices; so does the Baire property (which
is topological, not measure-theoretic); neither includes the other.
Question: what is the right condition (minimal common
generalisation)?
The contextual gap.
BGT has 420-odd pages of real analysis, then 4 (Appendix 1) in
more general settings; real analysis is not the natural context.
What is?
Hard proofs.
Some proofs in BGT are hard! E.g., Th. 1.4.3 p. 18-19 is proved
(Th. 3.2.5, p.141-143) 120-odd pages later in a more general
context; the special case is no easier. How many hard proofs are
actually needed? Answer (now!): zero.
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5. BinO: The Bingham-Ostaszewski program

Starting ten years ago, I began work with Adam (A.J.)
Ostaszewski (Math. Dept., London School of Economics) to fill
the gaps in BGT (§4 above), and extend Oxtoby’s work on
measure-category duality (§3 above). This is ongoing. In brief: it
is category, rather than measure, that is crucial: we speak of
Category and measure (the title of our forthcoming book). In
particular, one can do RV with just qualitative rather than
quantitative measure theory. The corpus so far:
BinO1-25 (21 published, the rest on the arXiv), plus Ost1-9 (and
MilO, with Harry I. Miller).
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6. The Steinhaus-Weil theorem

The theory of RV rests on Steinhaus’s theorem of 1920 (BGT Th.
1.1.1): for a measurable set A ⊂ R of positive measure, the
difference set A− A contains a neighbourhood of the origin. The
same is true for A non-meagre (Piccard 1939; Pettis 1950, 1951).
This was extended to locally compact groups G by Weil in 1940:
A. Weil, L’intégration dans les groups topologiques, 1940 (2nd ed.
1965).
Here the sets have positive Haar measure (extending Lebesgue
measure on the line).
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7. The Ostrowski theorem

The other pillar of RV theory is the Ostrowski theorem. A function
f is additive if

f (x + y) ≡ f (x) + f (y), (CFE )

the Cauchy functional equation. Obvious examples: f (x) = cx : f
linear. Pathological examples can be constructed using Hamel
bases of the rationals Q over the reals R (G. Hamel, 1905 – this
needs the Axiom of Choice, AC, of Zermelo, 1904). But, just a
hint of decent behaviour in an additive function guarantees
linearity – a dichotomy between very good and very bad behaviour.
For (Ostrowski, 1929) if an additive function is bounded above or
below on a set of positive measure (e.g., any interval), it is linear
(BGT, Th. 1.1.7). Similarly for Baire functions (Mehdi, 1964).
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8. Density topologies

Recall the Lebesgue Density Theorem. Writing |.| for Lebesgue
measure, call a point x a density point of a set A if

|A ∩ (x − ε, x + ε)|/(2ε)→ 1 (ε ↓ 0).

Then almost all points of a measurable set are density points. Call
a set density-open if all its points are points of density. Then
(Haupt and Pauc, 1952; cf. C. Goffman and collaborators, 1961,
Denjoy, 1915) these open sets define a topology, the density
topology. This is a fine topology – it refines the usual (Euclidean)
topology. One can deal with the measure and category cases above
by working bitopologically – passing between the Euclidean
topology for the category case and the density topology for the
measure case (BinO15 (Colloq. Math., 2010), BinO24 (2016+)).
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9. Infinite combinatorics

Combinatorics is often thought of as a part of finite mathematics
(enumerative combinatorics – counting things): see e.g.
R. P. Stanley, Enumerative combinatorics, CUP, Vol. 1, 1997, Vol.
2, 1999.
But one of the great Paul Erdős’s contributions was infinite
combinatorics. See e.g.
Terence Tao and Van H. Vu, Additive combinatorics, CUP, 2006,
R. L. Graham, B. L. Rothschild and J. H. Spencer, Ramsey theory,
2nd ed., Wiley, 1990 (1st ed. 1980),
N. Alon and J. H. Spencer, The probabilistic method, 3rd ed.,
Wiley, 2008
(non-constructive existence proofs: behaviour is possible because it
is generic).
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We make systematic use of results from infinite combinatorics,
including the Kestelman-Borwein-Ditor theorem (KBD: Kestelman,
1947; Borwein and Ditor, 1978). Call null and meagre sets
negligible, their complements non-
negligible, and say a result holds for quasi all points if it holds off a
negligible set.
Th. KBD. If zn → 0 and T ⊂ R is non-negligible, then for quasi
all t ∈ T there is an infinite set Mt with

{t + zm : m ∈ Mt} ⊂ T .

This is the key to short proofs of the Uniform Convergence
Theorem (UCT) for RV (BGT, Th. 1.2.1), the main result of the
subject.
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10. Analytic sets

For X a Polish (complete separable metric) space, recall that the
Borel sets B(X ) are those in the σ-field generated by the open (or
closed) sets. The analytic sets are the continuous images of Polish
spaces, denoted Σ1

1(X ) (or A(X )). This notation is taken from the
descriptive theory of sets; see e.g.
A. S. Kechris, Classical descriptive set theory, Grad. Texts in
Math. 156, Springer, 1995.
These generalize the Borel sets: by Souslin’s theorem, a set is
Borel iff it is analytic and co-analytic.
The use of analytic sets in probability theory goes back to:
C. Dellacherie, Capacités et processus stochastiques, Erg. Math.
67, Springer, 1972,
C. Dellacherie, Ensembles analytiques, capacités, mesures de
Hausdorff, LNM 295, Springer, 1972.
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It was developed further in an LMS conference Analytic sets
organised by C. A. Rogers, University College London, 1978, where
my collaboration with Adam Ostaszewski was born. A recent
application is extensions to Ostrowski’s theorem (§7). F. Burton
Jones, 1942: an additive function f continuous on a set T which is
analytic and contains a Hamel basis (= spans R) is linear, so
f (x) = cx . Kominek, 1981: similarly with bounded in place of
continuous. For a unified proof of a common extension, to T
analytic and spanning a non-negligible set, see BinO8 (PAMS,
2010).
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11. Sequential and non-sequential aspects
RV is a continuous-variable theory (‘(x →∞)’ in (RV )). But,
BGT §1.6 on Sequences looks like ordinary RV. Also, of the several
proofs of UCT in BGT §1.2, all but one are by contradiction – via
a sequence ‘witnessing’ to the contradiction. We now know that
category, rather than measure, is decisive for RV. This depends on
the Baire Category Theorem. This in turn is sequential: its proofs
are sequential. Also, Baire category arguments only need the
Axiom of Dependent Choice, DC (‘what is needed to make
mathematical induction work’), rather than the full Axiom of
Choice, AC. The positive statements in measure theory also only
need DC. But, full measure theory includes ‘negative’ statements:
e.g. existence of non-measurable sets. The classic Vitali example
here explicitly uses AC. In brief: category needs only DC; measure
theory needs more. So measure-category duality breaks down at
the level of axiomatic assumptions. For a full account, with many
references, see the arXiv version (Appendix) of BinO23,
Category-measure duality: Jensen convexity and Berz sublinearity.
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12. Beurling theory

Call φ : R→ R+ Beurling slowly varying, φ ∈ BSV , if

φ(x + tφ(x))/φ(x)→ 1 (x →∞) ∀t ∈ R,

and self-neglecting, φ ∈ SN, if this holds uniformly on compact
t-sets. See BGT §2.11 for BSV (motivation: Beurling’s extension
of Wiener’s Tauberian theorem, unpublished by Beurling, 1957,
published by Peterson and by Moh, 1971, and for SN, work of the
Netherlands school on EVT). Bloom, 1976: continuity suffices for
UCT. B & Ostaszewski (BinO19, Trans. LMS 2014; BinO20,
Aequat Math. 2015; BinO21, Indag. Math., 2016; NHB, Ragnar
Norberg Festschrift, to appear) give a thorough treatment of this
area. Applications:
(i) Beurling moving averages: for φ ∈ SN,

[U(x + tφ(x))− U(x)]/φ(x)→ ct (x →∞) ∀t ≥ 0. (BMA)
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The Wiener Tauberian theorem deals with integral transforms of
convolution type,∫

f (t)k(x/t)dt/t or
∫

F (u)K (x − u)du. The Beurling Tauberian
theorem (designed for the Tauberian theory of Borel summability,
but very useful in probability theory – see e.g. NHB, Ann. Prob. 9
(1981)) is ‘convolution-like’:

(f ∗φk)(x) :=

∫
f
(x − t

φ(x)

) dt

φ(x)

(reducing to ordinary convolution for φ ≡ 1). These were
algebraically messy, till Adam discovered a clever algebraic
approach in BinO21.
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(ii) Stable laws directly (i.e., not by specialising from the
Lévy-Khintchine formula). See two recent papers on this:
E. J. G. Pitman and J. G. Pitman, A direct approach to the stable
distributions
(an extension by Jim Pitman of a handwritten manuscript by his
late father Edwin),
A. J. Ostaszewski, Stable laws and Beurling kernels
(suggested to Adam by refereeing this paper for my Festschrift, in
the light of BinO21). For these (and much else!), see
[PANT] Probability, Analysis and Number Theory. Papers in
Honour of N. H. Bingham (ed. C. M. Goldie and A. Mijatovic),
Advances in Applied Probability Special Volume 48A, 2016.
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13. Kendall’s theorem

Kendall’s theorem (1968; BGT, Th. 1.9.2): if xn →∞,
lim sup xn+1/xn = 1 (e.g. xn = n), and for some an →∞ and f , T
as above

anf (λxn)→ g(λ) (n→∞) ∀λ ∈ T ,

then f RV (and an RV, and g a power).
This important result underlies the definition of regularly varying
measures in higher dimensions. For X a random vector, say X has
regularly varying distribution (or law) if

nP(X/an ∈ .)→ µ(.) (n→∞)

for some measure µ (again, an is RV). See e.g.
H. Hult, F. Lindskog, T. Mikosch and G. Samorodnitsky, Ann.
Appl. Prob., 2005.
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14. Scaling and Fechner’s law

Fechner’s law (1860): if f , g are related, physically meaningful,
have no natural scale and are (reasonably) smooth, they obey a
power law: f = cgα. Example (my motivation): athletics times:
for, e.g., 5k and 10k, or half-marathon and marathon, etc. Here c
is a measure of the athlete’s quality (speed), while α seems
approximately constant over people.
Relationship: f (x) = φ(g(x)): f = φ ◦ g .
No scale: asymptotically scale-independent:
f (λx) ∼ ψ(λ)f (x): f RV.
So ψ is a power.
Similarly, from g = φ← ◦ f , g RV.
So as φ = f ◦ g←, φ RV: φ(x) = `(x)xα, ` SV. Simplest case,
` ≡ c : f = cgα: Fechner’s law.
See e.g. NHB, PIMB (2015).
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