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Aims:

(a) to unify "BFK" and "BIK" [below];

(b) to provide a statistical complement to BIK.
Sources:
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Finance 2 (2002), 241-250, MR1922404.
[BKS] NHB, RK & R. Schmidt): A semi-parametric
approach to risk management. Quantitative
Finance 3 (2003), 426-441, MR2026570.
[BFK] B, J. M. FRY & K: Multivariate elliptic
processes. Stat. Neerl. 64 (2010), 352-366;



BIK

[B1] NHB, Szeg0d’'s theorem and its probabilis-
tic descendants. Probability Surveys 9 (2012),
287-324;

[B2] NHB, Multivariate prediction and matrix
Szegd theory. Probability Surveys 9 (2012),
325-339.

[B3] NHB, Modelling and prediction of finan-
cial time series. Comm. Stat.: Theory and
Methods, 2012+

[BIK] NHB, A. Inoue & Y. Kasahara: An ex-
plicit representation of Verblunsky coefficients.
Statistics and Probability Letters 82.2 (2012),
403-410, MR2875229.

[KB] Y. Kasahara & NHB: Verblunsky coeffi-
cients and Nehari sequences. TAMS, to ap-
pear.



1. Semi-parametric models

S = (S;), discrete time ¢, a d-vector of dis-
counted prices S;(t) of risky assets.
Discounting:

(a) to achieve stationarity;

(b) in math. finance, discount everything, and
take conditional expectations under the equiv-
alent martingale measure (EMM — or risk-neutral
measure). See e.g. [BK], Preface.

Markowitz (1952):

(i) think of risk (covariance matrix ¥) and re-
turn (mean vector u together, not separately;
(ii) diversify: hold a large number d of assets,
with lots of negative correlation.

Thus any model for asset prices needs (u,2)
— a parametric component.

We restrict to > positive definite (so invert-
ible) — the generic case.

Standardisation: X; := Z_%(St — ). X = (Xy)
has mean O and cov. I.



32. Multivariate elliptic processes (MEP)
X above is spherically symmetric. Then we
can reduce to the quadratic form

Q= ||X¢)° = X Xy = (S — )T 718y — ),

which is in the elliptical family [BFK]. We as-
sume X is of the form

1
X; — p = R ATU, = R 22U, (MEP)

where 2 ha§ Cholesky decomposition > = AT A
(so A = X2, the usual matrix square root of
the positive definite matrix X), U = (U;) is
Brownian motion on the d-dimensional sphere,
and R = (Ry) is the risk driver (one-dimensional).
X is a MEP [BFK]. From (MEP),

var(X|Ry) = R?Y,  wvar(X;) = E[RtQ]Z.

This gives a simple stochastic volatility (SV)
model! As large or small values of R tend to
be followed by large or small values of R, this
gives volatility clustering — one of the stylized



facts of mathematical finance.

Estimation of parametric part (u, ).

. imprecise — subject to mean blur (Merton,
1980; Luenberger, 1998, §8.5). Work robustly
(e.g., Oja median).

> . robustness; affine equivariance; Lopuhaa &
Rousseeuw, AS 1991.

Estimation of non-parametric part.

(i) MEP, R an ergodic diffusion [BFK]. Esti-
mate the stationary density from

R =Q

and density estimation. Cf.

[Kut] Yu. A. Kutoyants, Statistical inference
for ergodic diffusion processes. Springer, 2004.
(ii)) MEP, R € SD, the class of self~decomposable
laws. These are the limit laws as t — oo of so-
lutions of SDEs

dR; = —cRdt + dZ4, (OU)

of Ornstein-Uhlenbeck (OU) type, with driving
noise Z = (Z;) a subordinator (positive Lévy



process), ¢ > 0 (¢ =1 if convenient). Theory:
see Sato §15-17 and §33, [BFK] §3:

[Sat] K.-I. Sato, Lévy processes and infinitely
divisible distributions. CUP, 1999.

Estimation: see

[JonMV] G. Jongbloed and F. H. van der Meulen,
Parametric estimation for subordinators and
induced OU processes. Scand. J. Stat. 33
(2006), 825-847.

[JonM] G. Jongbloed, F. H. van der Meulen
and A. W. van der Vaart, Non-parametric infer-
ence for Lévy-driven OU processes. Bernoulli
11 (2005), 759-791.

[BKRW] P. J. BICKEL, C. A. J. KLAASSEN,
Y.RITOV & J. WELLNER, Efficient and adap-
tive estimation for semiparametric models, 2nd
ed., Springer, 1998.



3. Prediction in general: Szego theory.
The basis of the prediction theory of station-
ary time-series is the Kolmogorov Isomorphism
Theorem (KIT) ([Kol]; see e.g. [B1], §2, scalar
case, [B2], §2, vector case). Thereis a random
measure Y with orthogonal increments, the
Cramér process or spectral process (Cramér
1942, Cramér & Leadbetter 1967, §7.5) and a
probability measure m on the unit circle T', the
spectral measure, plus an isomorphism

Xn PN 67,77,.

between the Hilbert spaces H (the Ly-space of
the process X = (X)) and Lo(m), which maps
between the time domain on the left and the
frequency domain on the right. One has the
Cramér (spectral) representation

— ind
Xn—/Te 4y (6), (CR)

E[(dY (6))?] = dm(6).



4. ACF and PACF

Also from KIT: taking E[X,] = 0, var(X,) =
1 for simplicity, the autocorrelation function
(ACF) v = () is given by

Partial autocorrelation function (PACF): a =
(an), Where ay, is the correlation between the
residuals at times O, n regressed on the inter-
mediate values.

ACF: cut-off for M A(q)

PACF: cut-off for AR(p).

The PACF gives an unrestricted parametriza-
tion: all values ay in the unit disc D are pos-
sible, and

o< Mm

is a bijection between D®° and P(T), the space
of probability measures on 1T'. This is Verblun-
sky's theorem of 1935-6 (rediscovered in statis-
tics, by Barndorff-Nielsen & Schou 1973,



F. L. Ramsey, AS 1974). The PACF (matrix-
valued in the vector case) is the sequence of
diagonals in the infinite triangular matrix of
finite-predictor coefficients (Levinson-Durbin al-
gorithm).

Theory: orthogonal polynomials on the unit
circle (OPUC, [B1]); matrix orthogonal poly-
nomials on the unit circle (MOPUC, [B2]).
[Sim] B. Simon, Orthogonal polynomials on
the unit circle. Part 1: Classical theory. Part
2: Spectral theory. AMS Collog. Publ. 54.1,
54.2, AMS, 2005.

The Levinson-Durbin algorithm is the three-
term recurrence relation in OPUC/MOPUC.
Estimation of PACF: see e.g. Dégerine, IEEE
1993, J. Multiv. Anal. 1994.

Estimation of m: frequency-domain or spectral
methods in Time Series: C. W. J. Granger &
M. Hatanaka; E. J. Hannan; M. B. Priestley;
B. G. Quinn.

By Verblunsky's theorem, we have a choice
herel



5. Szego’s theorem
The one-step prediction error

0% 1= E[(Xo — P(_s _11%0)"]
has ¢ > 0 in the non-deterministic (‘good’)
case, ¢ = 0 in the deterministic (‘bad’) case.
The Wold decomposition X = U + V gives X

as the sum of a non-deterministic U and a de-
terministic V:

Xn =Up + Vi,
U is a moving average,
n oo
Upn = Z Myp— &5 = Z mp&n—k»
j=—00 k=0

gj zero-mean and uncorrelated, with each other
and with V; E[¢,] = 0, var(&,) = E[£2] = o2
Sowhen o =0¢&,=0, U=0 and X is deter-
ministic. When o > 0, the spectral measures
of Un, Vi are uqe and us, the absolutely con-
tinuous and singular components of p (again,
the ‘good’ and ‘bad’ parts). Think of &, as



the ‘innovation’ at time n — the new random
input, a measure of the unpredictability of the
present from the past. This is only present
when o > 0; when o = 0, the present is deter-
mined by the past — even by the remote past.
Szegb’s Theorem.

(i) o > 0 iff logw € L1, that is,

/_ l0g w(6)df > —oo. (52)
(ii) o > 0 iff a € £5.
(iii)
o2 = [[3°(1 — |anl?),
so o > 0 iff the product converges, i.e. iff
Z|an|2 < 00! o € Uo;

(iv) o2 is the geometric mean G(u) of u:

o2 = exp(%/log w(0)dd) =: G(u) > 0. (K)

((i)-(iii): Szegod, 1915, 1920, 1921; (iv): Kol-
mogorov, 1941).



Under (Sz), the Szegdb function

7,9
T Z) log w(6)do) (z € D)

(OF)

h(z) = exp(—/(

has h € H> (Hardy space of order 2);
h is an outer function:;

h(e?)]? = w(6)

(h is an ‘analytic square root’ of w).

We usually assume not only (Sz) (‘nice compo-
nent present’), but also that the remote past
is trivial:

Hooo = ﬁ Hn = {0} (PND)

n=——0o0
(‘nasty component absent’). The process is
then called purely non-deterministic (PND):

(PND) = (ND) + (us = 0) = (Sz) + (us = 0)

= (0> 0) + (us =0) (PND)



6. Discrete and continuous time

In (CR), the process (Xy) in discrete time cor-
responds to the Cramér process Y. Replacing
integer time n by continuous time t in (CR),

X = /T 0 dy (6), (CR)

defines a process X = (X;) in continuous time,
interpolating (X,,) at integer times. This (X})
IS very smooth: it is a random entire function
of exponential type 7, by the Paley-Wiener the-
orem. Thisis an instance of the sampling theo-
rem: under suitable conditions, we can recover
a continuous-time signal from a discrete-time
signal, sampled frequently enough (at at least
the Nyquist rate). The Nyquist rate is attained
here (rate 1: integers 1 apart, circle has length
2T).

The familiar ARMA (Box-Jenkins) models in
discrete time have counterparts in CARMA mod-
els in continuous time (see e.g. P. J. Brockwell



and co-workers). Similarly, the GARCH pro-
cesses in discrete time have COGARCH ana-
logues (see e.g. C. Klippelberg and co-workers).
Econometric data is usually gathered in dis-
crete time. But there is an extensive theory in
continuous time; see e.g.

[Berg] A. R. Bergstrom, Continuous-time econo-
metric modelling. Oxford University Press, 1990.
The BFK approach via MEP is in continu-
ous time, and gives stochastic volatility (SV) —
volatility clustering. The BIK approach using
(CR) takes continuous time in its stride, but
not volatility clustering. By contrast, COGA-
RCH enables one to model SV explicitly, but is
more complicated than its discrete-time coun-
terpart, GARCH.



7. Stationarity v. non-stationarity

All three models above (‘MEP-Lévy,
MEP-diffusion and Szegd') depend on station-
arity. This is a strong assumption! One of
the great themes of the Nobel Prize winner
Sir Clive Granger was to warn one not to use
methods based on stationarity in non-stationary
situations. This can lead, via spurious regres-
sion, to misleading expert advice to politicians,
hence to mistaken macroeconomic policies, and
hence to massive and irreversible losses in GDP!
Recall also (§1; [BK], Preface) that one dis-
counts to use the standard risk-neutral valua-
tion theory of mathematical finance.

But, the risk-free interest rate r that one dis-
counts by varies over time; there are several
relevant rates (Bank rate, Libor rate, ...), etc.
So: discounting, though mathematically trivial
and convenient, is problematic in practice on
real data, particularly econometric or financial
data over long time periods.



One has several choices:

(i) Discount anyway, as best one can.

(ii) Avoid discounting, by using a non-stationary
extension of the theory above. E.g., KIT ex-
tends, but now with a spectral bimeasure in
place of a spectral measure (two arguments:
we now need two time arguments, rather than
one).

(iii) ‘Split the difference’: use local stationar-
ity. See e.g. R. Dahlhaus and co-workers.
(iv) Use time-frequency methods. See e.g.

R. CARMONA, W.-L. HIANG & B. TORRESANI:
Practical time-frequency analysis: Gabor and
wavelet transforms, with an implementation in
S. Acad. Press, 1998.

Comparison of methods, data analysis.

Work in progress! The aim is to compare how
well the various approaches fit real data. This
would even be interesting in one dimension -
but much more so in c. 50, say: c. 12 eco-
nomic sectors, and c. 4 firms per sector. NHB



