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Aims:
(a) to unify ”BFK” and ”BIK” [below];
(b) to provide a statistical complement to BIK.
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[B1] NHB, Szegö’s theorem and its probabilis-

tic descendants. Probability Surveys 9 (2012),

287-324;

[B2] NHB, Multivariate prediction and matrix
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1. Semi-parametric models

S = (St), discrete time t, a d-vector of dis-

counted prices Si(t) of risky assets.

Discounting:

(a) to achieve stationarity;

(b) in math. finance, discount everything, and

take conditional expectations under the equiv-

alent martingale measure (EMM – or risk-neutral

measure). See e.g. [BK], Preface.

Markowitz (1952):

(i) think of risk (covariance matrix Σ) and re-

turn (mean vector µ together, not separately;

(ii) diversify: hold a large number d of assets,

with lots of negative correlation.

Thus any model for asset prices needs (µ,Σ)

– a parametric component.

We restrict to Σ positive definite (so invert-

ible) – the generic case.

Standardisation: Xt := Σ−1
2(St − µ): X = (Xt)

has mean 0 and cov. I.



§2. Multivariate elliptic processes (MEP)

X above is spherically symmetric. Then we

can reduce to the quadratic form

Q := ∥Xt∥2 = XT
t Xt = (St − µ)TΣ−1(St − µ),

which is in the elliptical family [BFK]. We as-

sume X is of the form

Xt − µ := RtA
TUt = RtΣ

1
2Ut, (MEP )

where Σ has Cholesky decomposition Σ = ATA

(so A = Σ
1
2, the usual matrix square root of

the positive definite matrix Σ), U = (Ut) is

Brownian motion on the d-dimensional sphere,

and R = (Rt) is the risk driver (one-dimensional).

X is a MEP [BFK]. From (MEP ),

var(Xt|Rt) = R2
t Σ, var(Xt) = E[R2

t ]Σ.

This gives a simple stochastic volatility (SV)

model! As large or small values of R tend to

be followed by large or small values of R, this

gives volatility clustering – one of the stylized



facts of mathematical finance.

Estimation of parametric part (µ,Σ).

µ: imprecise – subject to mean blur (Merton,

1980; Luenberger, 1998, §8.5). Work robustly

(e.g., Oja median).

Σ: robustness; affine equivariance; Lopuhaä &

Rousseeuw, AS 1991.

Estimation of non-parametric part.

(i) MEP, R an ergodic diffusion [BFK]. Esti-

mate the stationary density from

R2
t = Q

and density estimation. Cf.

[Kut] Yu. A. Kutoyants, Statistical inference

for ergodic diffusion processes. Springer, 2004.

(ii) MEP, R ∈ SD, the class of self-decomposable

laws. These are the limit laws as t → ∞ of so-

lutions of SDEs

dRt = −cRtdt+ dZt, (OU)

of Ornstein-Uhlenbeck (OU) type, with driving

noise Z = (Zt) a subordinator (positive Lévy



process), c > 0 (c = 1 if convenient). Theory:

see Sato §15-17 and §33, [BFK] §3:
[Sat] K.-I. Sato, Lévy processes and infinitely

divisible distributions. CUP, 1999.

Estimation: see

[JonMV] G. Jongbloed and F. H. van der Meulen,

Parametric estimation for subordinators and

induced OU processes. Scand. J. Stat. 33

(2006), 825-847.

[JonM] G. Jongbloed, F. H. van der Meulen

and A. W. van der Vaart, Non-parametric infer-

ence for Lévy-driven OU processes. Bernoulli

11 (2005), 759-791.

[BKRW] P. J. BICKEL, C. A. J. KLAASSEN,

Y. RITOV & J. WELLNER, Efficient and adap-

tive estimation for semiparametric models, 2nd

ed., Springer, 1998.



3. Prediction in general: Szegö theory.

The basis of the prediction theory of station-

ary time-series is the Kolmogorov Isomorphism

Theorem (KIT) ([Kol]; see e.g. [B1], §2, scalar
case, [B2], §2, vector case). There is a random

measure Y with orthogonal increments, the

Cramér process or spectral process (Cramér

1942, Cramér & Leadbetter 1967, §7.5) and a

probability measure m on the unit circle T , the

spectral measure, plus an isomorphism

Xn ↔ ein.

between the Hilbert spaces H (the L2-space of

the process X = (Xt)) and L2(m), which maps

between the time domain on the left and the

frequency domain on the right. One has the

Cramér (spectral) representation

Xn =
∫
T
einθdY (θ), (CR)

E[(dY (θ))2] = dm(θ).



4. ACF and PACF

Also from KIT: taking E[Xn] = 0, var(Xn) =

1 for simplicity, the autocorrelation function

(ACF) γ = (γn) is given by

γn := E[XnX̄0] =
∫
T
e−inθdm(θ).

Partial autocorrelation function (PACF): α =

(αn), where αn is the correlation between the

residuals at times 0, n regressed on the inter-

mediate values.

ACF: cut-off for MA(q)

PACF: cut-off for AR(p).

The PACF gives an unrestricted parametriza-

tion: all values αn in the unit disc D are pos-

sible, and

α ↔ m

is a bijection between D∞ and P (T ), the space

of probability measures on T . This is Verblun-

sky’s theorem of 1935-6 (rediscovered in statis-

tics, by Barndorff-Nielsen & Schou 1973,



F. L. Ramsey, AS 1974). The PACF (matrix-
valued in the vector case) is the sequence of
diagonals in the infinite triangular matrix of
finite-predictor coefficients (Levinson-Durbin al-
gorithm).
Theory: orthogonal polynomials on the unit
circle (OPUC, [B1]); matrix orthogonal poly-
nomials on the unit circle (MOPUC, [B2]).
[Sim] B. Simon, Orthogonal polynomials on
the unit circle. Part 1: Classical theory. Part
2: Spectral theory. AMS Colloq. Publ. 54.1,
54.2, AMS, 2005.
The Levinson-Durbin algorithm is the three-
term recurrence relation in OPUC/MOPUC.
Estimation of PACF: see e.g. Dégerine, IEEE
1993, J. Multiv. Anal. 1994.
Estimation of m: frequency-domain or spectral
methods in Time Series: C. W. J. Granger &
M. Hatanaka; E. J. Hannan; M. B. Priestley;
B. G. Quinn.
By Verblunsky’s theorem, we have a choice
here!



5. Szegö’s theorem

The one-step prediction error

σ2 := E[(X0 − P(−∞,−1]X0)
2]

has σ > 0 in the non-deterministic (‘good’)

case, σ = 0 in the deterministic (‘bad’) case.

The Wold decomposition X = U + V gives X

as the sum of a non-deterministic U and a de-

terministic V :

Xn = Un + Vn;

U is a moving average,

Un =
n∑

j=−∞
mn−jξj =

∞∑
k=0

mkξn−k,

ξj zero-mean and uncorrelated, with each other

and with V ; E[ξn] = 0, var(ξn) = E[ξ2n] = σ2.

So when σ = 0 ξn = 0, U = 0 and X is deter-

ministic. When σ > 0, the spectral measures

of Un, Vn are µac and µs, the absolutely con-

tinuous and singular components of µ (again,

the ‘good’ and ‘bad’ parts). Think of ξn as



the ‘innovation’ at time n – the new random

input, a measure of the unpredictability of the

present from the past. This is only present

when σ > 0; when σ = 0, the present is deter-

mined by the past – even by the remote past.

Szegö’s Theorem.

(i) σ > 0 iff logw ∈ L1, that is,∫
− logw(θ)dθ > −∞. (Sz)

(ii) σ > 0 iff α ∈ ℓ2.

(iii)

σ2 =
∏∞

1
(1− |αn|2),

so σ > 0 iff the product converges, i.e. iff∑
|αn|2 < ∞ : α ∈ ℓ2;

(iv) σ2 is the geometric mean G(µ) of µ:

σ2 = exp(
1

2π

∫
logw(θ)dθ) =: G(µ) > 0. (K)

((i)-(iii): Szegö, 1915, 1920, 1921; (iv): Kol-

mogorov, 1941).



Under (Sz), the Szegö function

h(z) := exp(
1

4π

∫
(
eiθ + z

eiθ − z
) logw(θ)dθ) (z ∈ D)

(OF )

has h ∈ H2 (Hardy space of order 2);

h is an outer function;

|h(eiθ)|2 = w(θ)

(h is an ‘analytic square root’ of w).

We usually assume not only (Sz) (‘nice compo-

nent present’), but also that the remote past

is trivial:

H−∞ :=
∞∩

n=−∞
Hn = {0} (PND)

(‘nasty component absent’). The process is

then called purely non-deterministic (PND):

(PND) = (ND) + (µs = 0) = (Sz) + (µs = 0)

= (σ > 0) + (µs = 0) (PND)



6. Discrete and continuous time

In (CR), the process (Xn) in discrete time cor-

responds to the Cramér process Y . Replacing

integer time n by continuous time t in (CR),

Xt :=
∫
T
eitθdY (θ), (CR)

defines a process X = (Xt) in continuous time,

interpolating (Xn) at integer times. This (Xt)

is very smooth: it is a random entire function

of exponential type π, by the Paley-Wiener the-

orem. This is an instance of the sampling theo-

rem: under suitable conditions, we can recover

a continuous-time signal from a discrete-time

signal, sampled frequently enough (at at least

the Nyquist rate). The Nyquist rate is attained

here (rate 1: integers 1 apart, circle has length

2π).

The familiar ARMA (Box-Jenkins) models in

discrete time have counterparts in CARMA mod-

els in continuous time (see e.g. P. J. Brockwell



and co-workers). Similarly, the GARCH pro-

cesses in discrete time have COGARCH ana-

logues (see e.g. C. Klüppelberg and co-workers).

Econometric data is usually gathered in dis-

crete time. But there is an extensive theory in

continuous time; see e.g.

[Berg] A. R. Bergstrom, Continuous-time econo-

metric modelling. Oxford University Press, 1990.

The BFK approach via MEP is in continu-

ous time, and gives stochastic volatility (SV) –

volatility clustering. The BIK approach using

(CR) takes continuous time in its stride, but

not volatility clustering. By contrast, COGA-

RCH enables one to model SV explicitly, but is

more complicated than its discrete-time coun-

terpart, GARCH.



7. Stationarity v. non-stationarity

All three models above (‘MEP-Lévy,
MEP-diffusion and Szegö’) depend on station-
arity. This is a strong assumption! One of
the great themes of the Nobel Prize winner
Sir Clive Granger was to warn one not to use
methods based on stationarity in non-stationary
situations. This can lead, via spurious regres-
sion, to misleading expert advice to politicians,
hence to mistaken macroeconomic policies, and
hence to massive and irreversible losses in GDP!
Recall also (§1; [BK], Preface) that one dis-
counts to use the standard risk-neutral valua-
tion theory of mathematical finance.
But, the risk-free interest rate r that one dis-
counts by varies over time; there are several
relevant rates (Bank rate, Libor rate, ...), etc.
So: discounting, though mathematically trivial
and convenient, is problematic in practice on
real data, particularly econometric or financial
data over long time periods.



One has several choices:
(i) Discount anyway, as best one can.
(ii) Avoid discounting, by using a non-stationary
extension of the theory above. E.g., KIT ex-
tends, but now with a spectral bimeasure in
place of a spectral measure (two arguments:
we now need two time arguments, rather than
one).
(iii) ‘Split the difference’: use local stationar-
ity. See e.g. R. Dahlhaus and co-workers.
(iv) Use time-frequency methods. See e.g.
R. CARMONA, W.-L. HIANG & B. TORRÉSANI:
Practical time-frequency analysis: Gabor and
wavelet transforms, with an implementation in
S. Acad. Press, 1998.
Comparison of methods; data analysis.
Work in progress! The aim is to compare how
well the various approaches fit real data. This
would even be interesting in one dimension -
but much more so in c. 50, say: c. 12 eco-
nomic sectors, and c. 4 firms per sector. NHB


