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KIESEL: Multivariate elliptic processes. Sta-

tistica Neerlandica 64 (2010), 352-366.



Sources

Surveys:
[Bi] N. H. Bingham, Szegö’s theorem and its
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[Si3] B. Simon, Szegö’s theorem and its de-
scendants, 2011.
Multiple time series:
[HeLo] H. Helson & D. Lowdenslager, Acta
Math., 1958, 1961
[WiMa] N. Wiener & P. Masani, Acta Math.,
1957, 1958; Th. Prob. Appl., 1959.
[Ro] Yu. A. Rozanov, Stationary random pro-
cesses, 1967.
[Ha] E. J. Hannan, Multiple time series, 1970.



Matrix OPUC (MOPUC):
[DPS] D. Damanik, A. Pushnitski & B. Simon,
The analytic theory of matrix orthogonal poly-
nomials. Surveys in Approximation Theory 4
(2008), 1-85.
[DHKT] M. Derevyagin, O. Holtz, S. Khrushchev
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1. Kolmogorov Isomorphism Theorem

Stone’s theorem: a group U = (Ut) of unitary

transformations has a spectral representation

Ut =
∫

eiθtE(dθ),

with E(.) a projection-valued random measure.

For X = (Xt) a stationary ℓ-dimensional time

series, Xt = U tX0: spectral rep.

Xt = U tX0 =
∫

eiθtE(dθ)X0.

On the left – time domain; on the right – fre-

quency domain. To summarize:

Xt ↔ eit., (KIT )

the Kolmogorov Isomorphism Theorem (Kol-

mogorov [Ko] in 1941). Hence the spectral

representation of the correlation matrix:

γn := E[XT
t Xt+n] =

∫
einθµ(dθ),



with µ the spectral measure: Herglotz’s theo-

rem.

§2. Verblunsky’s theorem

For ℓ = 1, the partial autocorrelation coeffi-

cient (PACF) is

an := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0),

the correlation between the residuals at times

0, n resulting from (linear) regression on the in-

termediate values X1, . . . , Xn−1. Following Si-

mon [Si1] on OPUC, call the PACF the Verblun-

sky coefficients. Then |an| < 1, and the bijec-

tion

a ↔ µ

is Verblunsky’s theorem. It gives an unrestricted

parametrization – very useful in statistics and



prediction theory; see e.g. [Bi] §2.
In the ℓ-dimensional case, using MOPUC rather

than OPUC, the spectral measure µ is now

ℓ × ℓ matrix-valued, and corresponds to the

ℓ× ℓ covariance matrix by Herglotz’s theorem.

Damanik, Pushnitski and Simon [DPS] show

that the Verblunsky coefficients are now ℓ × ℓ

matrices on the unit circle, satisfying

∥an∥ < 1,

that any sequence a of such matrices can arise,

and again a ↔ µ is a bijection (Verblunsky’s

theorem for MOPUC). They use Bernstein-

Szegö approximation (cf.[Si1] Th. 1.7.8 in the

scalar case, Morf, Vieira and Kailath [MVK]

in 1978). The Szegö recursion that leads to

OPUC is known in the time-series literature

as the Levinson-Durbin algorithm, extended to

the multivariate case by Whittle [Wh] in 1963.



§3. Szegö’s theorem

Derevyagin, Holtz, Khrushchev and Tyaglov

[DHKT], again using Bernstein-Szegö approx-

imation, show that (using † for the adjoint

(conjugate transpose), µ′ = w for the density

of (the abs. continuous component of) µ)

logΠ∞
n=1det(1− a†nan) =

∫
tr logwdθ/2π

for any non-trivial (i.e. of infinite support)

matrix-valued probability measure on the unit

circle. Call those for which the integral on the

right is > −∞ Szegö measures, and the finite-

ness of the integral Szegö’s condition, (Sz).

They deduce that µ is a Szegö measure iff∑
∥a†nan∥ < ∞

(”a ∈ L2”). This is Szegö’s theorem for MOPUC.

The Wold decomposition extends from the scalar

to the matrix case; see e.g. Hannan [Ha], III.



As in the scalar case, one has two components

in general, one a moving average, one ‘deter-

ministic’ (random but time-independent). Call

the process non-deterministic (ND) if the first

(‘nice’) component is present, purely non-

deterministic (PND) if the second (‘nasty’) com-

ponent is absent. In the scalar case, these

components correspond to the Lebesgue de-

composition µ = µac + µs. In the matrix case,

the Wold(-Zasuhin) decomposition corresponds

to the Lebesgue(-Cramér) decomposition in

the full-rank case, but not in general.

§4. Matrix spectral factorizations and ma-

trix Szegö functions

Factorizations are already present in the scalar

case. For an analytic function in the Hardy



space on the disc, identify the boundary val-

ues of the function on the unit circle with the

function itself, as usual; then the spectral den-

sity w and the Szegö function h are related by

w = hh̄ = |h|2.

Here h is in the Hardy space H2, and is an outer

function; think of h as the ‘analytic square

root’ of w.

In the matrix case, this gives the spectral fac-

torization problem. Wiener and Masani [WM]

give the matrix factorization:

W = GG†, (WM)

where again G is an outer function in the sense

of matrix-valued Hardy spaces.

Masani (1966): (i) the Wold(-Zasuhin) de-

composition (§4; [WiMas1], Th. 7.11);

(ii) the Kolmogorov Isomorphism Theorem, be-

tween the time and spectral domains (§§6, 7);

(iii) Wiener-Masani factorizations (WM) (Th.



9.7 – see also Rozanov [Ro1], [Ro2]);

(iv) the matrix extension of Kolmogorov’s for-

mula for the one-step prediction error (eq. (10.1),

the main result of [WiMas1] (Th. 7.10); see

also Whittle [Wh]);

(v) convergence of the finite-past predictor to

the infinite-past predictor (§13) – cf. Baxter’s

inequality, §6 below); note also

(vi) Whittle’s multivariate extension of the Levinson-

Durbin algorithm, mentioned in §2.
See also [Mas4] for extensive commentary on

Wiener’s work in this area.

The matrix case splits between the full-rank

(rank ℓ) and degenerate-rank (rank m < ℓ).

Degenerate-rank case: [Ro2], [Mas3], §§11,12,
[WiMas3] for ℓ = 2, Matveev in 1959 [Mat] in

the general case. Full-rank case (generic, and

easier): Γ is positive-definite (cf. regression

and multi-collinearity; see e.g. [BiFr], §7.4).
All this is 1950s/60s, pre Fefferman-Stein on



BMO and pre Sarason on VMO. Peller [Pel1] in

1990 considered matrix spectral factorizations

w = h∗h = h♯h
∗
♯

(recall h is determined to within unitary equiv-

alence). He introduced the phase function

u = h∗♯h
−1

(extending h̄/h in the scalar case – [Bi], [KaBi]).

He showed that the process is completely reg-

ular (§10 below) iff

u ∈ VMO.

Arov and Dym [ArDy3], §3.16] give matrix fac-

torizations of positive definite functions into

factors from the Nevanlinna class.

The simplest, and principal, case is that of a

PND process of full rank. See e.g. several

papers by the Georgian school (Ephremidze,

Janashia and Lagvilada: a Hardy matrix func-

tion is outer iff its determinant is outer).



Operator-valued case: non-commutative prob-

ability theory, non-commutative Hardy-space

theory, non-commutative martingale inequali-

ties etc. See e.g. [RoRo], esp. Ch. 6, Curtain

and Zwart [CuZw], Barclay [Bar1], [Bar2], Mei

[Mei], Peller [Pel1] – [Pel3].

§5. The strong Szegö theorem

The strong Szegö theorem, as presented in e.g.

[Si1] Ch. 6, [Bi] §5, extends in full to the

matrix case. For a short proof, see Böttcher

[Bo1]; cf. [Bo2], [Bo3], Basor and Widom

[BasWi]. A different approach has been given

more recently by Chanzy [Cha1], [Cha2].



§6. Baxter’s inequality and Baxter’s theo-

rem

Baxter used OPUC in a series of probabilistic

papers of 1961-63 ([Bax1] – [Bax3]), on the

weak and strong forms of Szegö’s limit theo-

rem (for Toeplitz determinants), finite and in-

finite Wiener-Hopf equations (in discrete time

n = 0,1,2, . . .: finite with
∑n

k=0, infinite with∑∞
k=0), and the convergence of finite-predictor

coefficients (given a finite section of the past

of length n) to the corresponding infinite-predictor

coefficients. This depends on Baxter’s inequal-

ity [Bax3], used by Simon [Si1], Ch. 5, in his

proof of ‘Baxter’s theorem’ – the Verblunsky

coefficients a ∈ ℓ1 iff the correlation function

γ ∈ ℓ1, the spectral measure µ is absolutely

continuous, and its density µ′ = w is continu-

ous and positive.

Baxter’s inequality and convergence of finite



predictors in the matrix case were considered

by Masani in 1966 ([Ma3] §13) and by Cheng

and Pourahmadi [ChPo] in 1993. For recent

developments in the scalar case, see [InKa2].

Approximation by such finite-section operators:

Seidel and Silbermann [SeSi] (see §2.5.4), us-

ing Banach-algebra techniques (as did Baxter

and Simon).

§7. Nehari sequences and the Levinson–

McKean condition

Nehari’s theorem (1957): a Hankel operator is

a bounded map from ℓ2 on the natural num-

bers to itself iff the sequence generating it is

the sequence of negative Fourier coefficients

of a bounded function. See e.g. [Si1] Th.

6.2.17. Finding such a generating sequence

is thus a type of moment problem (insoluble,



determinate or indeterminate). The indeter-
minate case is particularly important; the gen-
erating sequence is then called a Nehari se-
quence. This Nehari moment (or interpola-
tion) problem was considered by Adamjan, Arov
and Krein [AdArKr] in 1968; they described
the solution set in terms of Sarason’s concept
of rigidity [Sa1]. Rigidity and complete non-
determinism (CND); Bloomfield, Jewell and Hayashi
[BlJeHa]. It turns out that (CND) is equivalent
to the intersection of past and future property
(IPF) [IK2]. Forthcoming work [KaBi]: both
are equivalent to the Levinson–McKean prop-
erty ([LeMcK] p. 105, in continuous time).
Phase functions are crucial here.
Matrix extensions: matrix Nehari problem, Arov
and Dym [ArDy1], [ArDy2], [ArDy3] Ch. 4, 7,
10 (‘strong regularity’).
Related is the Schur (interpolation) problem;
matrix case Dubovoj, Fritzsche and Kirstein
[DuFrKi]; cf. [ArDy3], §7.6.



§8. Pure minimality

Scalar case: pure minimality is (µs = 0 and)

Kolmogorov’s condition 1/w ∈ L1. Matrix case:

Makagon and Weron [MaWe], [Pou3, Th. 8.10].;

W−1 ∈ L1.

We turn now to two stronger conditions – pos-

itive angle (§9) and complete regularity (§10).
The four conditions in §§7-10, in increasing or-

der of strength, are intermediate conditions,

between the weak conditions (ND), (PND) and

the strong conditions (B), (sSz) (Baxter’s con-

dition and the strong Szegö condition) – the

‘Goldilocks principle’; cf. [Bi].



9. Positive angle and the matrix Mucken-

houpt condition

Muckenhoupt condition (A2) of analysis (see

e.g. [Bi] §6.2) – it occurs in connection with

the positive angle condition, (PA), and the

conditions of Helson and Szegö [HeSz] and of

Helson and Sarason [HeSa]. Matrix versions:

Arov and Dym [ArDy1], [ArDy3]. For ma-

trix versions of the Helson-Szegö condition, see

Pourahmadi [Pou1].

Treil and Volberg [TrVo1] show that the fol-

lowing matrix Muckenhoupt condition is nec-

essary and sufficient for the positive-angle con-

dition (PA) in the multivariate case:

supI∥(
1

|I|

∫
I
W )1/2(

1

|I|

∫
I
W−1)1/2∥ < ∞ (A2)

(sup over all intervals I of the unit circle).

As in [HeSz], [HeSa], (PA) (and so also (A2))



is equivalent to a condition on the sequence

ρ(n) of regularity coefficients:

ρ(.) < 1.

10. Complete regularity

Strengthening §9, call process completely reg-

ular if ρ(n) → 0 as n → ∞; see [IbRo], Ch. 4,

5. Treil and Volberg [TV2]: complete regular-

ity is equivalent to the following strengthening

of the Muckenhoupt condition (A2):

lim sup|I|→0∥(
1

|I|

∫
I
W )1/2(

1

|I|

∫
I
W−1)1/2∥ < ∞.

Note the form (”ρ(.) → 0, lim sup ... = 1”)

of the strengthenings here of the conditions

(”ρ(.) < 1, sup ... < ∞”) of §7 above.



§11. Hankel operators

Prediction theory has always involved Toeplitz
operators (as in Grenander-Szegö [GrSz]), and
Toeplitz and Hankel operators have many links
in operator theory. So also Hankel operators
(for which see Peller [P]) are useful in predic-
tion theory. For connections of Hankel oper-
ators with the matrix Muckenhoupt condition
and the matricial Nehari problem see Arov and
Dym in [ArDy3], Ch. 10, 11.

§12. Open questions

Q1. Matrix version of Baxter’s theorem. As
in §6, the matrix version of Baxter’s inequality
provides a good starting-point.
Q2. Matrix version of [KaBi]. This hinges on
solution of the matrix Nehari problem – the
step Γ → H. Work in progress.


