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Verblunsky’s theorem and partial autocor-

relation.

X = (Xn : n ∈ Z): discrete-time, zero-mean,

real, (wide-sense) stationary stochastic process,

with autocovariance function γ = (γn),

γn = E[X0Xn].

Herglotz’ theorem: spectral representation

γn =
∫
e−inθdµ(θ)

for some spectral measure µ on the unit circle

z = eiθ (boundary of unit disk D). Through-

out, take µ non-trivial – with infinite support.

Take varXn = 1: γ is the autocorrelation func-

tion and µ is a probability measure.

dµ(θ) = w(θ)dθ/2π + dµs(θ) :

w is the spectral density and µs is the singular

part of µ. By stationarity,

E[XmXn] = γ|m−n|.



The Toeplitz matrix for X, or µ, or γ, is

Γ := (γij), where γij := γ|i−j|;

positive definite. Principal minors Tn (below).

H: Hilbert space spanned by X = (Xn) in the

L2-space of the underlying probability space,

with inner product (X,Y ) := E[XY ] and norm

‖X‖ := [E(X2)]1/2.

H[−n,−1]: subspace of H spanned by {X−n, . . . , X−1}
(finite past at time 0 of length n),

P[−n,−1]: projection onto H[−n,−1] (best linear

predictor of X0 based on the finite past),

P⊥[−n,−1] := I − P[−n,−1]: orthogonal projection

(P⊥[−n,−1]X0 := X0 − P[−n,−1]X0 is the predic-

tion error).

For prediction based on the infinite past:

H(−∞,−1]: closed lin. span (cls) of Xk, k ≤ −1,

P(−∞,−1]: corresponding projection, etc.

Hn := H(−∞,n]: (subspace generated by) the

past up to time n

H−∞ :=
⋂∞
n=−∞Hn: remote past.



Partial autocorrelation function (PACF):
αn := corr(Xn − P[1,n−1]Xn, X0 − P[1,n−1]X0):
correlation between the residuals at times 0, n
resulting from (linear) regression on the inter-
mediate values X1, . . . , Xn−1.
α = (αn)∞n=1.
Unrestricted parametrization of PACF: the only
restrictions on the αn are the obvious ones re-
sulting from their being correlations – |αn| ∈
[−1,1] (or avoiding degeneracy, |αn| ∈ (−1,1)):
the α fill out the infinite-dimensional cube.
Statistics: Barndorff-Nielsen & Schou, 1973,
J. Multiv. An., F. L. Ramsey, 1974, Ann. Stat.
Analysis: Samuel Verblunsky, 1935, 1936, JLMS.
By contrast, the correlation function γ = (γ)n
again has each |γn| ∈ [−1,1], but the γ fill out
only part of the inf-dim cube (specified by de-
terminental inequalities).
Szegö recursion.
Let Pn be the orthogonal polynomials on the
unit circle (OPUC) w.r.t. m. Then

Pn+1(z) = zPn(z)− ᾱn+1P
∗
n(z),



where for any polynomial Qn of degree n,

Q∗n(z) := znQn(1/z̄)

are the reversed polynomials. Szegö recursion
(called the Durbin-Levinson algorithm in the
time-series literature is the OPUC analogue of
Favard’s theorem (three-term recurrence rela-
tion) for OPRL.
Herglotz and Verblunsky theorems:

α↔ µ↔ γ.

Weak condition: Szegö’s condition.
Write σ2 for the one-step mean-square predic-
tion error:

σ2 := E[(X0 − E(X0|Xk, k < 0))2].

Call X non-deterministic (ND) if σ > 0, deter-
ministic if σ = 0 (i.e. iff Xn ∈ H−∞ for each n

– the remote past dominates).
Wold decomposition (von Neumann in 1929,
Wold in 1938): if σ > 0,

Xn = Un + Vn,



with V deterministic and Un a moving average:

Un =
∞∑
0

mjξn−j,

ξj iid N(0, σ2).

Kolmogorov’s formula (1941):

σ2 = exp(
1

2π

∫
logw(θ)dθ) =: G(µ) > 0, (K)

(µs plays no role; on the right, G(µ) is the

geometric mean of µ. So: Szegö’s theorem:

σ > 0 iff

logw ∈ L1. (Sz)

When also the remote past is trivial –

H−∞ = {0}, i.e. µs = 0

– call X purely non-deterministic, or (PND):

(PND) = (ND) + (µs = 0) = (Sz) + (µs = 0).

Hardy spaces (see e.g. P. L. Duren, Theory

of Hp spaces, AP, 1974). Define the Szegö



function

h(z) := exp(
1

4π

∫
(
eiθ + z

eiθ − z
) logw(θ)dθ) (z ∈ D).

(OF )
Because logw ∈ L1 by (Sz), H := h2 is an
outer function for H1 (whence the name (OF )
above). By Beurling’s canonical factorization
theorem,
(i) h ∈ H2.
(ii) The radial limit

H(eiθ) := lim
r↑1

H(reiθ)

exists a.e., and

|H(eiθ)| = |h(eiθ)|2 = w(θ)

(thus h may be regarded as an ‘analytic square
root’ of w). The following are equivalent:
(i) Szegö condition (Sz) = (ND);
(ii) PACF α = (αn) ∈ `2;
(iii) MA coefficients m = (mn) ∈ `2;
(iv) Szegö function h(z) :=

∑∞
n=0mnzn ∈ H2.



Strong condition 1: Baxter’s theorem

We also have the following stronger equivalent

conditions (Glen Baxter, 1961, 1962, 1963; Si-

mon Vol. 1, Ch. 5):

(i) PACF α ∈ `1 (Baxter’s condition, (B));

(ii) autocorrelation γ ∈ `1, and µ is abs. cts

with continuous positive density:

minθw(θ) > 0.

(iii) MA coefficients m ∈ `1, µs = 0 and µ is ac

with continuous positive density w.

Long-range dependence (LRD)

Physics: spatial LRD, phase transitions.

Statistics: LRD in time; see e.g. Cox’s sur-

vey of 1984 (Selected Papers Vol. 2 (2005),

TS3), or

Jan Beran, Statistics for long-memory processes,

Ch&H, 1994.

There was no precise definition of LRD, but

two leading candidates, both involving the co-

variance γ:



(i) LRD is non-summability: γ /∈ `1.
(ii) LRD is covariance decaying like a power:
γn ∼ c/n1−2d as n → ∞, for some parameter
d ∈ (0,1/2) (d for differencing) and constant
c ∈ (0,∞) (and so

∑
γn =∞).

Motivated by Baxter’s theorem, one now has
Definition (Inoue, 2008, PTRF; L. Debowski,
preprint): LRD is α /∈ `1.
Note. 1. (ii) above may be generalized to γn
regularly varying, or w(t) regularly varying.
2. Hurst parameter H := d+ 1/2 ∈ (1/2,1).
3. For d ∈ (0, 1

2), `(.) slowly varying, the fol-
lowing class of prototypical long-memory ex-
amples is considered in Inoue-Kasahara 2006:

γn ∼ `(n)2B(d,1− 2d)/n1−2d,

mn ∼ `(n)/n1−d,

rn ∼
d sin(πd)

π
.

1

`(n)
.1/n1+d

(r = (rn): autoregressive (AR) coefficients).
4. They also consider FARIMA(p, d, q).



Strong condition 2: strong Szegö condn

This is motivated by two areas of physics.

1. The cepstrum.

J. W. Tukey and collaborators, 1963: distin-

guishing the signature of the underground ex-

plosion in a nuclear weapon test from that of

an earthquake. Used the cepstrum L = (Ln):

Fourier coefficients of logw (cepstrum: spec-

trum + reflection, for echo: hard c). This was

used by Bloomfield in his time-series models

(alternative to Box-Jenkins ARMA(p, q)).

2. The strong Szegö limit theorem, Szegö

(1952):

det Tn

G(µ)n
→ E(µ) := exp{

∞∑
1

kL2
k)} (n→∞).

Taking logs gives the (weak) Szegö limit the-

orem of 1915:

(log det Tn)/n→ G(µ).



Motivation: Onsager’s work in the two-dimensional

Ising model, and in particular Onsager’s for-

mula, giving the existence of a critical tem-

parature Tc and the decay of the magnetiza-

tion as the temperature T ↓ Tc.
Write H1/2 for the subspace of `2 of sequences

a = (an) with

‖a‖2 :=
∑
n

(1 + |n|)|αn|2 <∞

(‘1’ on the right to give a norm, or ‖.‖ van-

ishes on the constant functions) – a Sobolev

space (also a Besov space, whence the alter-

native notation B
1/2
2 ). This plays the role here

of `2 for Szegö’s theorem and `1 for Baxter’s

theorem. Note that, although `1 and H1/2 are

close in that a sequence (nc) of powers be-

longs to both or neither, neither contains the

other (consider an = 1/(n logn), an = 1/
√
n if

n = 2k, 0 otherwise).

Ibragimov’s version of the strong Szëgo limit



theorem: if (Sz) = (ND) holds and µs = 0,

then

G(µ) =
∞∏
j=1

(1− |αj|2)−j = exp(
∞∑
n=1

nL2
n)

(all may be infinite). The infinite product con-

verges iff the strong Szegö condition holds:

α ∈ H1/2, (sSz)

or equivalently by above

L ∈ H1/2. (sSz′)

The Golinski-Ibragimov theorem states that,

under (Sz), finiteness forces µs = 0.

Borodin-Okounkov formula (2000; Geronimo

& Case, 1979).

This turns the strong Szegö limit theorem above

from analysis to algebra. In terms of operator

theory and in Widom’s notation, the result is

det Tn(a)

G(a)n
=
det(I −QnH(b)H(c̃)Qn)

det(I −H(b)H(c̃))
,



for a a sufficiently smooth function without

zeros on the unit circle and with winding num-

ber 0. Then a has a Wiener-Hopf factorization

a = a−a+; b := a−a
−1
+ , c := a−1

− a+; H(b), H(c̃)

are the Hankel matrices H(b) = (bj+k+1)∞j,k=0,

H(c̃) = (c−j−k−1)∞j,k=0, and Qn is the orthog-

onal projection of `2(1,2, . . .) onto `2({n, n +

1, . . .}). By Widom’s formula,

1/det(I −H(b)H(c̃)) = exp{
∞∑
k=1

kL2
k} =: E(a)

(see e.g. Simon 1, Th. 6.2.13), and

QnH(b)H(c̃)Qn → 0 in the trace norm, whence

det Tn(a)/G(a)n → E(a),

the strong Szegö limit theorem.

Absolute regularity and β-mixing

Weak dependence: mixing conditions (general);

regularity conditions (Gaussian case). We as-

sume for simplicity that our process is Gaus-

sian, which brings the two hierarchies of mixing



and regularity conditions together. Gaussian
case: Ibragimov & Rozanov; [IR] IV.3 (infor-
mation regularity), IV.4 (absolute regularity),
V (complete regularity).
Mutual information at lag n:

In := I({Xt : t < 0}, {Xt ≥ n});

for the definition of the mutual information on
the right, see e.g. Ibragimov & Linnik, IV.1.
If In → 0 as n → ∞, the process is called
information regular (or I-mixing). The mu-
tual information may be infinite, but is finite
iff L ∈ H1/2, and then

I =
1

2
‖L‖2 =

1

2

∞∑
k=1

kL2
k.

The strongest of the conditions we study here
is information regularity (or I-mixing), equiv-
alently, absolute regularity (or β-mixing). For
their equivalence, see [IR] IV.3, p. 128. Spec-
tral characterization for abs. regularity:

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),



where P is a polynomial with its roots on the

unit circle and the cepstrum L∗ = (L∗n) of w∗

satisfies (sSz) ([IR] IV.4, p. 129). Thus abso-

lute regularity is weaker than (sSz).

Intermediate conditions (four, in decreasing

order of strength)

1. Complete regularity (or ρ-mixing): ρ-mixing

coefficients ρ(n)→ 0 [IR]. Spectral characteri-

zation

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial with its roots on the

unit circle and for all ε > 0,

log w∗ = rε + uε + ṽε,

where rε is continuous, uε, vε are real and bounded,

and ‖uε‖ + ‖vε‖ < ε ([IR], V.2 Th. 3; cf.

Fefferman-Stein decomposition). Alternatively,

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),



where P is a polynomial with its roots on the
unit circle and

log w∗ = u+ ṽ,

with u, v real and continuous (Sarason; Helson
and Sarason).
Complete regularity (ρ-mixing) is equivalent to
strong mixing (α-mixing) ([IR] IV.1, (1.9) and
(1.16)). Since α(.) ≤ β(.) ([IR], 109-110), this
shows that absolute regularity (itself weaker
than (sSz)) implies complete regularity. Since
under Baxter’s condition (B) w is continuous
and positive, logw is bounded, so (B) implies
complete regularity by the above. This justifies
our characterization of (B), (sSz) and absolute
regularity as strong but complete regularity as
intermediate.
2. Positive angle: the Helson-Szegö and Helson-
Sarason conditions.
For subspaces A, B of H, the angle between A

and B is defined as

cos−1 sup{|(a, b)| : a ∈ A, b ∈ B}.



Then A, B are at a positive angle iff this supre-
mum is < 1. X satisfies the positive angle con-
dition, (PA), if for some time lapse k the past
cls(Xm : m < 0) and the future cls(Xk+m :
m ≥ 0) are at a positive angle, i.e. ρ(0) =
. . . ρ(k − 1) = 1, ρ(k) < 1, which we write as
PA(k) (Helson and Szegö, k = 1; Helson and
Sarason, k > 1). Spectral characterization:

µs = 0, w(θ) = |P (eiθ)|2w∗(θ),

where P is a polynomial of degree k − 1 with
its roots on the unit circle and

log w∗ = u+ ṽ,

where u, v are real and bounded and ‖v‖ <
π/2 ([IR] V.2, Th. 3, Th. 4). The Helson-
Szegö condition (PA(1)) coincides with Muck-
enhoupt’s condition A2 in analysis:

sup
I

((
1

|I|

∫
I
w(θ)dθ)(

1

|I|

∫
I

1

w(θ)
dθ)) <∞, (A2)

where |.| is Lebesgue measure and the supre-
mum is taken over all subintervals I of the unit



circle T . See e.g. Hunt, Muckenhoupt and

Wheeden [HMW]. Reducing PA(k) to PA(1)

(by sampling every kth time point), we then

have complete regularity (ρ(n) → 0) implies

PA(1) = (A2).

3. Pure minimality

Interpolation problem: find best linear inter-

polation of a missing value, X0 say, from the

others. Write H ′n := cls{Xm : m 6= n} for the

closed linear span of the values at times other

than n. X is minimal if Xn /∈ H ′n, purely mini-

mal if
⋂
nH
′
n = {0}. Spectral condition for min-

imality is (Kolmogorov in 1941) 1/w ∈ L1 (and

for pure minimality, this + µs = 0). Under min-

imality, the relationship between the moving-

average coefficients m = (mn) and the autore-

gressive coefficients r = (rn) becomes sym-

metrical, and one has the equivalences (i) min-

imal; (ii) AR coefficients r = (rn) ∈ `2; (iii)

1/h ∈ H2.

4. Rigidity; (LM), (CND), (IPF ).



Rigidity; the Levinson-McKean condition.
Call g ∈ H1 rigid if is determined by its phase:

f ∈ H1 (f not identically 0), f/|f | = g/|g| a.e.

implies f = cg for some positive constant c
(Sarason, Nakazi, de Leeuw and Rudin, Levin-
son and McKean). Call the condition that µ
be ac with spectral density w = |h|2 with h2

rigid, or determined by its phase, the Levinson-
McKean condition, (LM).
Complete non-determinism; intersection of past
and future (IK06).
(i) complete non-determinism,

H(−∞,−1] ∩H[0,∞) = {0}, (CND)

(ii) the intersection of past and future property,

H(−∞,−1]∩H[−n,∞) = H[−n,−1] (n = 1,2, . . .)
(IPF )

(LM) ⇔ (IPF ) ⇔ (CND).

These are weaker than pure minimality, but
stronger than (PND), itself stronger than the
weak condition (ND) = (Sz).


