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1. Compound interest

If one invests $1 for a year at 100x % simple
interest, after one year one has 1 + x ($).
One has 1+ 1

2x after half a year, and investing
this for the second half gives (1 + 1

2x)
2. Sim-

ilarly, investing with simple interest calculated
n times per year gives (1+(x/n))n. Clearly, we
are better off the bigger n is. As n increases,
our final capital increases, to the limit ex:

(1 +
x

n
)n → ex (n → ∞).

This is compound interest, or exponential growth
– the limit of simple interest as the interest is
compounded continuously. Similarly, if xn → x,

(1 +
xn

n
)n → ex (n → ∞).

This also extends to complex numbers zn → z:

(1 +
zn

n
)n → ez (n → ∞). (∗)

It turns out that this result is a crucial ingre-
dient to the proofs of our two pillars of Prob-
ability Theory below.



2. Characteristic functions (CFs)

For X a random variable (rv), its characteristic

function (CF) is

ϕ(t) = ϕX(t) := E[eitX]

(t ∈ R will suffice here, but t ∈ C is also possi-

ble). Then if X,Y are independent rvs,

ϕX+Y (t) = E[eit(X+Y )]

= E[eitX .eitY ] (property of exponentials)

= E[eitX].E[eitY ] (independence)

= ϕX(t).ϕY (t).

So adding independent rvs corresponds to mul-

tiplying CFs (but to convolution of distribu-

tions: this involves an integration, so is harder,

and much harder if we add lots of terms). So

if Sn := X1 + . . .+Xn, ϕSn(t) = ϕX(t)n.

Also, from

ex = 1+ x+ . . .+ xn/n! + o(x) (x → 0) :



if µn := E[Xn] exists, one would expect

ϕX(t) = E[
n∑

k=0

(it)kXk/k! + o(tn)]

=
n∑
0

(it)kE[Xk]/k! + o(tn) (t → 0).

This is in fact true; we assume it here. (The
proof uses Measure Theory, to which we return
later.)
The CF determines the distribution it comes
from uniquely, and the correspondence between
the distribution and its CF is suitably con-
tinuous (Lévy’s continuity theorem for CFs,
below). So the CF encodes all the informa-
tion in the distribution, in a way that is often
more convenient (e.g., when adding indepen-
dent rvs, as here).
The CF is a special kind of Fourier transform
(actually, a Fourier-Stieltjes transform). This
is related to the Laplace transform. Such inte-
gral transforms are very useful, in both theory
and applications.



3. The standard normal law

ϕ(x) :=
1√
2π

e−
1
2x

2

is a (probability) density (function) (non-negative,

and integrates to 1).

Proof. Write I for its integral. Then

I2 =
1

2π

∫ ∞

−∞
e−

1
2x

2
dx.

∫ ∞

−∞
e−

1
2y

2
dy.

Write this product of two repeated integrals

as a double integral over the (x, y)-plane (in-

tegrand e−
1
2(x

2+y2)). Change to plane polar

coordinates (integrand e−
1
2r

2
, dxdy → rdrdθ).

Now do the r and θ integrations separately. //

The corresponding (probability) distribution (func-

tion) is

Φ(x) :=
∫ x

−∞
ϕ(y)dy.

If X is a rv with this distribution, then

P (X ≤ x) = Φ(x).



Φ is called the standard normal (distribution,
or law), Φ = N(0,1). The general normal law
N(µ, σ2) has mean µ and variance σ2 > 0; if
X ∼ N(µ, σ2), then (X − µ)/σ ∼ N(0,1). The
moment-generating function (MGF) is

MX(t) := E[etX] =
∫

etx.
1√
2π

e−
1
2x

2
dx

=
∫ 1√

2π
e−

1
2[(x−t)2−t2]dx,

completing the square. Take out the e
1
2t

2
, and

write u := x − t. The integral is 1 (‘normal
density’), so

MX(t) = E[etX] = e
1
2t

2
.

Formally replace t by it (i =
√
−1) to get

ϕX(t) = E[eitX] = e−
1
2t

2
.

All this is correct! One needs some Complex
Analysis (analytic continuation gives it imme-
diately; Cauchy’s theorem gives it after a cal-
culation).



4. The Weak Law of Large Numbers (WLLN)

For X,X1, X2, . . . independent and identically

distributed (iid) random variables (rvs), with

mean µ:

E[|X|] < ∞, E[X] = µ,

Sn := X1 + . . .+Xn:

Theorem (Weak Law of Large Numbers

(WLLN)).

Sn/n → µ (n → ∞) in probability,

i.e. for all ϵ > 0,

P (|Sn/n− µ| > ϵ) → 0 (n → ∞).

Proof. If the Xk have CF ϕ(t), then as the

mean µ exists ϕ(t) = 1 + iµt + o(t) as t → 0.

So (X1 + . . .+Xn)/n has CF

E exp{it(X1 + . . .+Xn)/n} = [ϕ(t/n)]n

= [1+
iµt

n
+ o(1/n)]n,



for fixed t and n → ∞. By (∗), the RHS has

limit eiµt as n → ∞. But eiµt is the CF of the

constant µ. This suggests that

(X1+. . .+Xn)/n → µ (n → ∞) in distribution.

This is indeed true, by Lévy’s continuity theo-

rem (which we quote). As the limit µ is con-

stant, this gives further

(X1+. . .+Xn)/n → µ (n → ∞) in probability

(one can check this easily). //



5. The Central Limit Theorem (CLT)

The variance of a rv X is

σ2X := E[(X − E[X])2],

and then

σ2X = E[X2]− (E[X])2.

The proof below is just the proof of the WLLN

above, but with the Taylor expansion of the CF

carried one term further, because now we have

one more moment.

Theorem (Central Limit Theorem (CLT)).

If Xi are iid with mean µ and variance σ2, then

as n → ∞

(Sn−nµ)/(σ
√
n) → Φ = N(0,1) in distribution.

Proof. When we subtract µ from each Xk, we

change the mean from µ to 0 and the second

moment from µ2 to the variance σ2. So by



the moments property of CFs, Xk − µ has CF

1−1
2σ

2t2+o(t2) as t → 0. So X1+ . . .+Xn−nµ

has CF

E exp{it(X1+. . .+Xn−nµ)} = [1−
1

2
σ2t2+o(t2)]n (t → 0).

Replace t by t/(σ
√
n) and let n → ∞:

E exp{it(X1 + . . .+Xn − nµ)/(σ
√
n)}

= [1−
1

2
.
t2

n
+o(1/n)]n → exp{−t2/2} (n → ∞),

by (∗) again.

The left is the CF of (Sn − nµ)/(σ
√
n);

the right is the CF of Φ = N(0,1).

By the continuity theorem for CFs, this gives

(Sn − nµ)/(σ
√
n) → Φ in distribution. //



6. The Strong Law of Large Numbers

(SLLN).

It turns out that the conclusion of the WLLN

(convergence in probability) can be greatly strength-

ened, to convergence with probability one. We

do not need stronger conditions, but the proof

is now much harder, so is omitted.

Theorem (Strong Law of Large Numbers

(SLLN)). If the Xn are iid with mean µ,

Sn/n → µ (n → ∞) with probability 1.

We abbreviate ‘with probability 1’ to ‘almost

surely’, or ‘a.s.’:

Sn/n → E[X] = µ a.s.



7. Interpretation

The LLN (in Weak or Strong form) gives the

mathematical form of the ‘folklore’ statement

known as the Law of Averages. This is known

to the man or woman in the street. It says,

e.g., that fair coins fall heads about half the

time in the long run.

The CLT gives the mathematical form of the

Law of Errors. This is known to the physicist

in the street, and says that errors are normally

distributed about the mean. E.g.: to measure

a physical constant (electrical conductivity of

copper, specific heat of mercury, etc.): mea-

sure it n times, independently. Each reading

Xn is the ‘right answer’, c say, plus a measure-

ment error, ϵn say. If the experiment is un-

biased (‘right on average’), E[ϵn] = 0. Then

LLN says ϵ̄ :=
∑n

1 ϵk/n ∼ 0, so

X̄ ∼ E[X] = c :



X̄ gives us our estimate of the answer. Simi-

larly, X2 ∼ E[X2], so

X2 − (X̄)2 ∼ E[X2]− (E[X])2 = var(X) = σ2,

which gives us our estimate of the accuracy.

A conclusion of the form ”c = 7.034 ± 0.003”

means that our estimate of the answer is 7.034,

our estimate of the standard deviation σ (SD:

square root of the variance σ2) is 0.003, and

that our average reading X̄ is approximately

normally distributed with this mean and this

SD.

Note. The variance σ2 has good mathematical

properties. But the SD σ has the same units

as the data, and so is better suited for use in

Physics, etc. So we use both.



8. A little history
Jakob Bernoulli (1654-1705)
Ars Conjectandi (AC) (1713, posthumous)
WLLN for ‘Bernoulli trials’ (tossing a perhaps
biased coin)
Abraham de Moivre (1667-1754)
The Doctrine of Chances (DC), 1718/1738/1756
Normal distribution; CLT for Bernoulli trials
Carl Friedrich Gauss (1777-1855)
Theoria motus ... (TM), 1809.
Gauss was the greatest mathematician of all
time. The normal distribution is also called
the Gaussian, after him and his work on CLT.
Paul Lévy (1886-1971)
Calcul des Probabilités (CP), 1925:
Lévy’s continuity theorem for CFs; modern proof
of WLLN and CLT.
Andrei Nikolaevich Kolmogorov (1903-1987)
Grundbegriffe der Wahrscheinlichkeitsrechnung,
1933 (Foundations of probability theory): SLLN.
Kolmogorov was the greatest probabilist of all
time. His SLLN ended a journey Bernoulli be-
gan 220 years before!



9. Measure Theory

Henri Lebesgue (1875-1941)

Thesis, Intégrale, longueur, aire, 1902.

It turns out that the mathematics needed to do

Probability Theory properly is Measure Theory,

initiated by Lebesgue.

One also needs Complex Analysis, initiated by

Augustin-Louis Cauchy (1789-1857) in 1825-

29.

Moral: if you want to do Probability Theory

properly, learn as much Analysis as possible!

Probability Theory is not just very good as

mathematics – it is also very useful, as it pro-

vides the tools needed to do Statistics, a sub-

ject of great and growing practical importance.

NHB


