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§1. Why regular variation?

Limit theorems in probability theory:

BGT, Ch. 8. Recall two basic results:

Weak Law of Large Numbers (WLLN): for Xn

iid, distribution function F mean µ, Sn :=
∑n

1Xk,

Sn/n → µ (n → ∞) in prob.,

Central Limit Theorem (CLT): if Xn are iid

with mean µ and variance σ2,

Φ(x) := (1/
√
2π)

∫ x
−∞ exp{−1

2y
2}dy,

(Sn−nµ)/
√
nσ → Φ = N(0,1) (n → ∞) in law.

How far can we generalize, beyond existence of

the mean and variance? Both answers involve

regular variation:

WLLN: Sn/an converges to a (non-zero) con-

stant in prob. iff the truncated mean
∫ x
−x ydF (y)

is slowly varying (sv);

CLT: (Sn − an)/bn converges in law to a (non-

deg.) limit iff the truncated variance
∫ x
−x y

2dF (y)

is slowly varying.



Here f : (0,∞) → (0,∞) is regularly varying if

f(λx)/f(λ) → g(λ) (x → ∞) ∀λ > 0;

for f measurable or with the Baire property
g(λ) ≡ λρ for some ρ, the index of f , f ∈ Rρ.
Then ℓ ∈ R0 is slowly varying: ℓ(λx)ℓ(x) → 1.
Tauberian theory: BGT, Ch. 4,
J. Korevaar, Tauberian theory: A century of
developments, Grundl. 329, Springer, 2004,
IV: Karamata’s heritage: regular variation.

∫ ∞

0
e−sxd(xρ) = ρ

∫ ∞

0
e−sxxρ−1dx

= ρΓ(ρ)/sρ = Γ(1+ ρ)/sρ (ρ > 0) :

the Laplace-Stieltjes transform of a power xρ is
Γ(1 + ρ)/sρ. The Hardy-Littlewood-Karamata
theorem (H&L 1914, Karamata 1931; BGT
§1.7) extends this from powers to regularly
varying functions, both ways (for more gen-
eral transforms, see BGT Ch. 4).
Also: Analytic Number Theory, BGT Ch. 6;
Complex Analysis, BGT Ch. 7.



§2. Extreme-value theory (EVT)

See BGT §8.13, and the work of the ‘three fly-

ing Dutchmen’, Wim Vervaat (1942-94), Guus

(A. A.) Balkema and Laurens de Haan:

H. Maassen & F. W. Steutel, Remembering

Wim Vervaat, Stat. Neerlandica 50.1 (1996),

225-230.

EVT is crucially relevant to such practical prob-

lems as flooding in the Netherlands (see be-

low). The original theory is univariate. Multi-

variate extensions are also needed (sea levels at

a number of different points), and stochastic-

process versions (sea levels along the entire

dyke defence system). There have been re-

cent book-length treatments:

Guus Balkema & Paul Embrechts, High-risk

scenarios and extremes: A geometric approach,

Zürich Lectures in Advanced Math., European

Math. Soc., 2007,

L. de Haan & A. Ferreira, Extreme-value the-

ory: An introduction, Springer, 2006.



From my contribution to the Jef Teugels Festschrift
[Regular variation and probability: The early
years. J. Computational and Applied Mathe-
matics 200 (2007), 357-363, MR2276837
(2008g:26004, C. M. Goldie)]:
”Meanwhile, mathematics was overtaken by
reality. On the night of 31 January to 1 Febru-
ary 1953, a storm surge in the North Sea caused
extensive flooding and many deaths. In the
UK, 307 were killed; in the low-lying Nether-
lands, 1,783 people were killed (over 1,800 on
some counts). The author, then a schoolboy
of seven, remembers the public shock at the
time very well. The Netherlands Government
immediately gave top priority to understand-
ing the causes of such tragedies with a view
to preventing them if possible. Since it is the
maximum sea level which is the danger, EVT
is immediately relevant, and thus EVT became
a Netherlands scientific priority” (Balkema, de
Haan, Vervaat).



§3. Regular variation, BGT

Karamata (1930, 1931): continuous functions

Korevaar, van Aardenne-Ehrenfest, de Bruijn

(1949): measurable functions

Matuszewska (1965): Baire functions (prop-

erty of)

BGT, 1987/89 (historical aspects: NHB, Jef

Teugels Retirement Meeting, 2007).

Core theory rests on:

Steinhaus’ Theorem (1920) (Baire: Piccard

(1939); BGT Th. 1.1.1). If A is measurable

and non-null [Baire and non-meagre], its dif-

ference set contains an interval [around 0].

Ostrowski’s Theorem (1929) (Baire: Mehdi

(1964); BGT Th. 1.1.8). If k is an addi-

tive function, bounded below [or above] on a

non-null mble [non-meagre Baire] set, k(x) is

of the form cx: and so continuous – automatic

continuity [k is ‘very nice or very nasty’ – di-

chotomy]:

[BOst, Dichotomy and infinite combinatorics;



the theorems of Steinhaus and Ostrowski, MPCPS
150 (2011), 1-22, MR2739070].
Uniform Convergence Theorem (UCT). If ℓ :
(0,∞) → (0,∞) is mble/Baire and

ℓ(λx)/ℓ(x) → 1 (x → ∞) ∀λ > 0, (SV )

then the convergence is uniform on compact
λ-sets in (0,∞) (false with no condition on ℓ).
Questions arising from BGT:
Foundational (‘gap at the beginning’: p.11,
§1.2.5). What is the proper context (or mini-
mal common generalization of mble and Baire)?
Contextual (‘gap at the end’: p.423-6, Ap-
pendix 1). What is the natural generalization
of (λ, x) 7→ λx : (0,∞)2 → (0,∞) [or (u, v) 7→
u+ v : (−∞,∞)2 → (−∞,∞)]?
Hard proofs. (i) To reduce the number of hard
proofs to zero.
(ii) Seneta-Heiberg Theorem [Seneta (1973),
Heiberg (1974)]: Th. 1.4.3, p.18-19 in the
Karamata case, proved as Th. 3.2.5, p.141-3
in the de Haan case]. Why is this so hard?
Simplify!



§4. Bitopology.

A key new insight of our approach is that it

is the Baire case that is primary, not the mble

case. We handle the two together as ‘both

Baire’, using two topologies: the Euclidean

topology E for the Baire case, and the density

topology d (below) for the mble case. Recall

that for A mble, a is a density point of A if

|A ∩ (a− δ, a+ δ)|/(2δ) 1 (δ ↓ 0).

By the Lebesgue Density Theorem, almost all

points of such an A are density points. Call a

(mble) set U d-open if all its points are density

points. This defines a topology, the density

topology or d-topology (not metric! – ‘d for

density’). We quote:

(i) d is finer than E (d is a fine topology).

(ii) A is d-Baire iff it is (Lebesgue) mble.

(iii) A is d-meagre iff it is null. Hence

(iv) The reals form a Baire space under d (Baire’s

Category Theorem holds, for both d and E).



(v) A function is d-continuous iff it is (Denjoy)
approximately continuous.
For details, see BOst, Beyond Lebesgue and
Baire II: bitopology and measure-category du-
ality, Colloq. Math. 121 (2010), 225-238,
MR2738939.
Recall that completeness is not a topological
concept (it is not preserved under homeomor-
phism) – but we need it to do analysis properly
(think of ordinary calculus and the taking of
limits). We follow
Ost, Shift-compactness in almost analytic sub-
metrizable Baire groups and spaces, preprint.
A topology is metrizable if it is homeomorphic
to a metric space. A refinement of a metriz-
able topology is submetrizable (not superme-
trizable – be economical!). Topologies that are
analytically generated are useful, and for topo-
logical groups those which are almost analytic
– have a (norm) non-meagre analytic subset.
This is equivalent to almost completeness –
the topological version of completeness.



§5. Measure-category duality

Recall that there is a classic textbook treat-

ment of this:

J. C. Oxtoby, Measure and category: A survey

of the analogies between topological and mea-

sure spaces, 2nd ed., GTM 2, Springer 1980

[1st ed. 1971].

Recall also that:

(i) Countability is built into measure theory [via

σ-additivity], Baire category theory [meagre :=

countable union of nowhere dense sets], metric

spaces [via metrization theorems], and gener-

alizations – but not into General Topology.

(ii) Regular variation is a continuous-variable

theory – but most of the proofs in BGT of

UCT proceed via contradiction and sequences

witnessing to this contradiction.

(iii) There is a theory of sequential regular vari-

ation. BGT §1.9, Th. 1.9.1 (Kendall (1968),

Kingman (1964); Croft (1957)):

If lim sup cn = ∞, lim sup(cn+1 − cn) = 0:



(i) If G is open and unbounded above, then

for any open interval I there exists x ∈ I with

cn + x ∈ G i.o.

(ii) If f is continuous and limn f(x+ cn) exists

for all x in some open interval I, then limx f(x)

exists.

This involves Baire category, and ‘bridges the

gap’ between discrete and continuous limits.

The topological subtleties here have been probed

in depth recently by A. J. Ostaszewski:

Analytically heavy spaces: analytic Cantor and

analytic Baire theorems. Topology and its Ap-

plications 158 (2011), 253-275,

Analytic Baire spaces [preprint].

The ‘i.o.’ above involves infinite combinatorics

(Erdös and school).



6. Analytic sets

For background, see e.g.

C. A. Rogers et al., Analytic sets, Acad. Press,

1980 [Proceedings, LMS Conference, UCL, July

1978];

A. S. Kechris, Descriptive set theory, GTM

156, Springer, 1995, III.

The analytic sets – the ‘nice’ sets, of descrip-

tive set theory – are the continuous images

of Polish spaces. Analytic sets have the Baire

property, and are (universally) mble. So we

can combine the mble and Baire cases by spe-

cializing to analytic sets.

Think of the [mble] null and the [Baire] meagre

sets as negligibles, forming a class N . These

form an ideal, indeed a σ-ideal [by Σ0 = 0,

or the Baire Category Theorem]. For analytic

sets + σ-ideals of negligibles, see e.g.

BOst, Automatic continuity by analytic thin-

ning, PAMS 138 (2010), 907-919,

and the two Ost papers cited earlier.



For a sequence σ = (σ1, . . . , σn, . . .) of nat-

ural numbers (note that there are uncount-

ably many such σ – they are a model for the

irrationals, under continued fractions), write

(σ|n) := (σ1, . . . , σn). For a class S of sets, the

Souslin operation S yields the class

S(S) := ∪σ∩nS(σ|n), S(σ|n) ∈ S.

The Souslin operation S is idempotent, and

preserves the class of analytic sets (Lusin &

Sierpinski 1918, Sierpinski, 1933). It also pre-

serves the classes of Baire sets (Nikodym, 1925)

and mble sets (Szpilrajn-Marczewski, 1929, 1933).

It is crucial to handling analytic sets (see e.g.

the books by Rogers and Kechris above). It is

also the key tool by which we are able to handle

uncountability in the theory – e.g., in passing

between continuous and sequential limits.



7. Groups and actions

Bajsanski & Karamata (1968-9) began the study

of regular variation on topological groups. But

one must be careful: the reals do not form a

topological group under the density topology d

– although translation [the two-argument op-

eration of addition specialised to one argument

by fixing the other] is d-continuous. Topolo-

gists study such situations – semi-topological

groups, paratopological groups, etc.

Group-norms are like vector-space norms, ex-

cept that the scalars are restricted (to the units

±1 in the abelian case, and the powers ±1 gen-

erally). One can extend the theory of regular

variation from the classical setting on the line

[BGT etc.] to metrizable topological groups

[note the countability implicit here]. Normed

groups (V. L. Klee, 1952) are groups carry-

ing a right-invariant metric (by the Birkhoff-

Kakutani metrization theorem, a first-countable

Hausdorff group has a right-invariant metric).



Normed groups show a dichotomy: they are ei-

ther topological groups or pathological groups:

BOst, Normed versus topological groups: di-

chotomy and duality. Dissertationes Mathe-

maticae 472 (2010), 138p.

One can also work with group actions, regard-

ing λ as acting on the group, λ : x 7→ λx. One

can use the viewpoint of topological dynamics.

See e.g.

Ost, Regular variation, topological dynamics

and the Uniform Boundedness Theorem, Topol-

ogy Proceedings 36 (2010), 305-336, MR2643693.



§8. Infinite combinatorics

Perhaps the most famous result here is van

der Waerden’s theorem (1927): in any finite

colouring of the natural numbers, at least one

colour contains arbitrarily long arithmetic pro-

gressions. This is one of Khinchin’s three pearls

of number theory:

A. Ya. Khinchin, Three pearls of number the-

ory, Dover 1998 [Russian, 1947, 1948].

Infinite combinatorics has grown spectacularly,

largely under the influence of Erdös and his

school. See e.g.

T. Tao & V. N. Vu: Additive combinatorics,

CUP, 2006.

The following result – the Kestelman-Borwein-

Ditor Theorem (KBD) has proved very useful

to us, e.g. in producing a short new proof (the

9th) of the UCT:



THEOREM (KBD: Kestelman 1947, Borwein

& Ditor 1978, Trautner 1987; cf. the foot-

note on p.10 of ‘BGT2’, 1989). If zn → 0,

T is measurable and non-null/Baire and non-

meagre, then for all t ∈ T off a null/meagre

set, there is an infinite set Mt such that

{t+ zm : m ∈ Mt} ⊂ T.

There have been several developments of this

in BOst papers – e.g., Category Embedding

Theorem (CET). The best version so far is

the ‘bitopological shift-compactness theorem’:

Harry I. Miller & A. J. Ostaszewski, Group ac-

tion and shift compactness, preprint.

See also §6 in

BOst: Kingman, category and combintorics,

Ch. 6, p.135-168 in

N. H. Bingham & C. M. Goldie (ed.): Probabil-

ity and mathematical genetics. Sir John King-

man Festschrift, LMS LNS 378, CUP 2010.



§9. Logical assumptions

Recall that ordinary mathematics uses Zermelo-

Fraenkel set theory (ZF). We augment this by

the Axiom of Choice (AC) when we wish/need

to (ZFC). Recall also that, although ‘most

sets’ (in the reals, say) are non-measurable,

we need AC to be able to exhibit explicitly a

non-measurable set (e.g., Vitali’s example).

Recall also that in BGT Ch. 1 – Karamata

theory – we worked with mble/Baire functions,

and stayed within this class, essentially because

sequential limits of mble/Baire functions are

mble/Baire.

In BGT Ch. 2, Further Karamata theory: R ⊂
ER ⊂ OR – we did not assume existence of

limits, but allowed lim sup and lim inf, thereby

introducing two pairs of indices, the Karamata

(ER) and Matuszewska (OR) indices. We write

f∗(λ) := lim supx→∞f(λx)/f(x),

and similarly for f∗. The theory is harder, as

here measurability or the Baire property may



be lost. It rests on the version of the UCT due
to Delange (1954), Csiszár & Erdös (1964)
[BGT Th. 2.0.1].
One can extend our topological approach to
this setting also. For details, see
BOst, Regular variation without limits, JMAA
370 (2010), 322-338, MR2651656.
It turns out that the Delange result disaggre-
gates: one has to take it apart. Parts of it
need only ZFC. Parts of it need stronger set-
theoretic assumptions (Gödel’s Axiom of Con-
structibility, the Axiom of Projective Determi-
nacy, etc.) We probe the degree of degrada-
tion in going from f to f∗, from the point of
view of descriptive set theory (First, Second
and Third Character Theorems).

Historical note: The BOst collaboration was
conceived at UCL in July 1978 (Conference
on Analytic Sets) – before writing BGT began
in March 1981.


