Notes on inner twists.

Kevin Buzzard

February 9, 2012

Last modified 16/06/2008.

There's a weight 2 level 243 trivial character cuspidal normalised eigenform f whose q-expansion looks like

$$q + aq^2 + 4q^4 - aq^5 + 2q^7 + 2aq^8 - 6q^{10} + aq^{11} - q^{13} + 2aq^{14} + 4q^{16} - \cdots$$

with a a square root of 6. It looks from the q-expansion that every coefficient is either an integer, or an integer multiple of a, and this is indeed the case. Moreover, the integer multiples look like they're happening for q^n with $n=1 \mod 3$, and the multiples of a look like they're happening for $n=2 \mod 3$, and this is also correct. We can see this by considering the twist of the form by the Dirichlet character χ of conductor 3—we get another eigenform $f \otimes \chi$, of level at most 243*9, and by checking all possibilities we see that the only eigenform whose q-expansion agrees with the twist of $f \otimes \chi$ for the first few terms is f^{σ} , the Galois conjugate of f, where $1 \neq \sigma \in \operatorname{Gal}(\mathbf{Q}(\sqrt{6}/\mathbf{Q}))$.

This is an example of a form with an "inner twist". But this is a rather "generic" form too. For there is no CM involved (it is not the case that 50 percent of the a_p vanish—indeed p=3 and p=89 are the only primes less than 100 for which a_p vanishes) and furthermore there is no \mathbf{Q} -curve involved either: the 2-dimensional abelian variety A/\mathbf{Q} associated to f does not have the property that over $k:=\mathbf{Q}(\sqrt{-3})$, the field corresponding to χ , A splits (up to isogeny) as the product of two elliptic curves. What is happening, I think, is that A has an interesting endomorphism ring.

Some general result of Shimura shows that $\operatorname{End}_{\mathbf{Q}}^0(A)$ will be $E:=\mathbf{Q}(\sqrt{6})$, the coefficient field of the modular form, so we get 2-dimensional λ -adic Galois representations attached to f, for λ running through the primes of E. But over k there are more endomorphisms: indeed, Cremona shows that $\operatorname{End}_{\mathbf{Q}}^0(A) = \operatorname{End}_k^0(A)$ is a quaternion algebra $(-3, 6/\mathbf{Q})$, and 6 is not a norm for $\mathbf{Q}(\sqrt{-3})$, because the conic $A^2 + 3B^2 - 6C^2$ has no \mathbf{Q} -points, so this quaternion algebra does not split and an easy calculation (check all possibilities) shows that A must hence be absolutely simple. I think that the quaternion algebra must be the one of discriminant 6: if I've understood correctly it will be split by $\mathbf{Q}(\sqrt{6})$ and hence must be indefinite, at any rate.

Now here's a funny thing. Let λ be a prime of E and let $p \neq 3$ be a prime not dividing the norm of λ . Let's consider the λ -adic representation attached to f. If $p=1 \mod 3$ then the char poly of Frob_p will be x^2-tX+p with t an integer, and if $p=2 \mod 3$ then it will be $x^2-t\sqrt{6}x+p$ again with t an integer. If the eigenvalues of this latter matrix are α and β , then $\alpha+\beta=t\sqrt{6}$ and $\alpha\beta=p$, so $\alpha^2+\beta^2=6t^2-2p\in \mathbf{Z}$, and we see that the Galois representation restricted to G_k , the absolute Galois group of k, has trace in Z_ℓ , where $\lambda|\ell$. Note that if ℓ splits in E then the full Galois representation attached to the abelian variety is taking values in $\operatorname{GL}_2(\mathbf{Q}_\ell)$ and hence the restriction to G_k is too. But if ℓ is inert in E then the Galois representation is taking values in $\operatorname{GL}_2(\mathbf{Z}_{\ell^2})$ and it's not clear to me whether one can tease it into $\operatorname{GL}_2(\mathbf{Z}_\ell)$. Andrei Yafaev told me that the Mumford-Tate group of the abelian variety will be D^\times . This sounds very right but I can't prove it. Is the Mumford-Tate group the centralizer of D^\times in GSp_4 ?

Here's my guess: the centralizer of D^{\times} is just something isomorphic to D^{\times} . I think this because I'm pretty sure that $D \otimes D = M_4(\mathbf{Q})$ and this gives two commuting actions of D^{\times} on a 4-dimensional vector space. I can't find a pairing preserved by this though.

So I am guessing that the Mumford-Tate group is D^{\times} , so my guess is that the Galois representation attached to the modular form over the im quad field has image commensurable with $(\mathcal{O}_D \otimes \mathbf{Z}_{\ell})^{\times}$, meaning that there will only be problems at the primes 2 and 3.

1 Remarks on the mod p Galois representations.

I just noticed that if the Mumford-Tate group is B^{\times} then this forces the mod p representation of the absolute Galois group of k to be reducible if B ramifies at p. This is because \mathcal{O}_B , when tensored up to the integers \mathcal{O} in a quadratic extension of \mathbf{Q}_p , doesn't become the full maximal order in $M_2(\mathcal{O})$. Hence one expects the mod 2 and mod 3 representations attached to the form to be reducible when restricted to the imaginary quadratic field.

The mod 2 representation attached to f takes values in $\operatorname{GL}_2(\mathbf{Z}/2\mathbf{Z})$ and a bit of experimenting shows that the splitting field of the representation is the Galois closure of $\mathbf{Q}(6^{1/3})$ (modulo the bad primes 2 and 3, the coefficient of q^p should be 1 mod 2 iff p is 1 mod 3 and doesn't split completely in $\mathbf{Q}(6^{1/3})$, that is, iff 6 has no cube root mod p. This representation is irreducible but when restricted to k of course becomes reducible.

The mod 3 representation attached to the form over \mathbf{Q} is just 1 plus cyclo, so is certainly reducible over k as well.