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1 Pre-Robba.

Let K be a finite extension of Qp. For r a positive rational number, consider the ring B(r) of rigid
functions on the rigid space over K defined by p−r ≤ |z| < 1. Note that this space is not an affioid
because it’s open at one end. Hence one might expect the ring B(r) to have nasty properties. But
in fact it’s a “Bezout domain”, or something. Here’s a key construction, due to Lazard.

Theorem 1. (Lazard) Let r ≥ m1 > m2 > m3 > . . . > mn > . . . be a decreasing sequence
of positive rationals that tends to zero. For each n let Pn(T ) be a polynomial in K[T ] with the
property that all its zeros have valuation mn, and that Pn(0) = 1 (we normalise the valuation so
that the valuation of a uniformiser is 1). Then there is a function in B(r) with the property that
the zeros of this function are precisely the union of the zeros of Pn.

The theorem is proved in Lazard’s 1962 IHES paper “Les zéros d’une fonction analytique d’une
variable sur un corps valué complet”. The result is false for K = Cp! If the valuation is not discrete
then the best that one can do is to find a function whose zero set contains the zeros of Pn for all
n; Lazard also talks about this case. For non-discretely-valued fields K one basically needs K to
be spherically complete. Lazard is a reference for all this.

Proof. It’s not hard. Naively one might hope to simply write down f =
∏
n Pn(T ). The problem

is that this might not converge for |z| < 1: for example if Pn(T ) = 1 + T + p−1Tn then for any
|z| < 1 we have |Pn(z) − 1| = |z| for n sufficiently large, and hence Pn(z) − 1 is not tending to
zero, so the product does not converge.

However it’s possible to modify Pn(T ) so that it does converge. The theory of the newton
polygon tells us that the coefficient of T i in Pn(T ) has valuation at least −i.mn. Write down
the formal inverse of Pn(T ) in K[[T ]]. This also has the same property: the coefficient of T i has
valuation at least −i.mn and (this is where we use discreteness of K) the first Nn := [1/mn]
coefficients are in the integers of K. Truncate the reciprocal at that point (so it’s in O[T ]); call
the truncation Tn. Set Qn = Pn.Tn. Now Tn has no zeros or poles in the open unit disc, so Qn
and Pn have the same divisor (in the open unit disc). However Qn is of the form 1+aNn

TNn + . . .
and again newton polygon theory tells us that for M ≥ Tn the valuation of the coefficient of TM

is at least −M.mn, so the valuation of Qn(z)− 1 is at least −Nn.mn +Nnv(z) = Nn(v(z)−mn)
and this tends to infinity with n if |z| < 1, because v(z) −mn is eventually at least v(z)/2 > 0
and Nn = [1/mn] tends to infinity. We’re done!

One can also “factorize” in the following way. Given a non-zero rigid function f on the open
unit disc over a discretely-valued field, one could consider its divisor (f), check that it has the
properties required of it in Theorem 1, and hence write f = gu with g an infinite product of the
form in the proof, and u a function which doesn’t vanish anywhere. However consider the function
f(T ) = log(1 + T ). Serre has observed that one can define q = ((1 + T )p − 1)/((1 + T ) − 1) and
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φ on Zp[T ] by φ(1 + T ) = (1 + T )p, and if for n ≥ 0 we set Pn(T ) = φn(q)/p = (1+T )p
n+1
−1

(1+T )pn−1 then

an elementary exercise involving binomial coefficients shows that for |z| < 1 we have

log(1 + z) = z
∏
n≥0

Pn(z).

On the other hand the algorithm above won’t produce these Pns; the Pn aren’t in Zp[T ] so one
has to take their reciprocal and modify by some fudge factor and so on, and one recovers an ugly
expression for log instead of the beautiful one above. Note that the reason one doesn’t need to
modify anything is that for all z in the open unit disc the infinite product converges, because
Pn(T ) = 1

p (1 + (1 + T )p
n

+ (1 + T )2p
n

+ . . .) (p terms) and each term tends to 1 as n gets big, so
the average also tends to 1.

2 The Robba Ring.

The Robba ring over K (a finite extension of Qp) is the union for all 0 < r < 1 (with r ∈ pQ)
of the functions on the open annulus r < |z| < 1 (this annulus is defined over K). Explicitly, an
element of R has a power series

∑
n∈Z anT

n with an ∈ K and this power series must converge on
some annulus r < |z| < 1.

It appears to be a theorem that R is a Bézout ring, which seems to mean that every finitely-
generated ideal is principal. From the above arguments, it seems to me that a principal ideal might
basically look like a sequence of zeros tending to the boundary, with the zeros on each circle |z| = r
all being defined over K (and hence there being at least the denominator of logp(r) of them, as
it were!). In particular we can write log(1 + T )/T = ab with a = P0P2P4 . . . and b = P1P3P5 . . ..
Note that the function φ above still makes sense on the Robba ring, although it does not make
sense on the functions on the annuli: if F converges on r < |z| < 1 then φ(F ) might not converge
on such a big annulus, it will only typically converge on a smaller one.

3 Kedlaya’s theorem.

Kedlaya proved something about φ-modules over the Robba ring. A φ-module is M , a finite rank
free R-module, plus F : M → M a semilinear map, that is, F (rm) = φ(r)F (m), such that the
induced map F : R ⊗R,φ M → M is an isomorphism. Note that this is not an étale φ-module:
étale means something else much more complicated.

In fact one of the problems is defining étale! The Robba ring has no natural integral structure.
But it does have the following subring: Kedlaya calls it Γcon and it’s a discrete valuation ring: it’s
just the power series in the Robba ring whose coefficients are in OK ! Explicitly, it’s the things in
the p-adic completion AK of OK [[T ]][1/T ] which converge on some annulus.

If K is a finite unramified extension of Qp then Berger would refer to Γcon as A†K .
If X is the localisation of OK [[T ]][1/T ] at the maximal ideal (p) then X ⊂ Γcon ⊂ AK , and

all three of these things are DVRs with residue field k((T )), and X isn’t complete, and neither is
Γcon but Γcon is Henselian, and AK is complete.

Kedlaya proves that any φ-module over the Robba ring has a filtration whose subquotients
descend to Γcon[1/p], the field of fractions of Γcon. Now over a DVR there’s a Dieudonne-Manin
theorem, so we get slopes. Kedlaya’s theorem is that the subquotients of his filtration all descend,
and each descended module has all slopes the same, and the slopes are strictly increasing [the
smallest slope is the slope of the submodule].

The slopes arising in this way are called the slopes of the φ-module over the Robba ring.
Kedlaya defines étale to mean slope zero.
If K is a finite unramified extension of Qp then it’s trivial that étale φ-Γ-modules over the

Robba ring are the same as Galois representations! Because that’s how they’re born.
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