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Abstract

We give eight new examples of icosahedral Galois representations that
satisfy Artin’s conjecture on holomorphicity of their L-function. We
give in detail one example of an icosahedral representation of conduc-
tor 1376 = 25 · 43 that satisfies Artin’s conjecture. We also briefly ex-
plain the computations behind seven additional examples of conductors
2416 = 24 · 151, 3184 = 24 · 199, 3556 = 22 · 7 · 127, 3756 = 22 · 3 · 313,
4108 = 22 · 13 · 79, 4288 = 26 · 67, and 5373 = 33 · 199.

Introduction

Consider a continuous irreducible Galois representation

ρ : Gal(Q/Q)→ GLn(C)

with n > 1. Inspired by his reciprocity law, Artin conjectured in [1] that
L(ρ, s) has an analytic continuation to the whole complex plane. Many of the
known cases of this conjecture were obtained by proving the apparently stronger
assertion that ρ is automorphic, in the sense that the L-function of ρ is equal
to the L-function of a certain automorphic representation (whose L-function is
known to have analytic continuation). In the special case where n = 2 and ρ
is in addition assumed to be odd, the automorphic representation in question
should be the one associated to a classical weight 1 modular eigenform, and
in fact there is conjectured to be a bijection between such ρ and the set of
all weight 1 cuspidal newforms, which should preserve L-functions. It is this
bijection that we are concerned with in this paper, so assume for the rest of the
paper that n = 2 and ρ is odd.

In this special case, the construction of [7] shows how to construct a con-
tinuous irreducible odd 2-dimensional representation from a weight 1 newform,
and the problem is to go the other way. Say that a representation is modular if
it arises in this way.

If the image of ρ is solvable, then ρ is known to be modular [11, 18]; if the
image is not solvable, then Im(ρ) in PGL2(C) is isomorphic to the alternating
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group A5, and the modularity of ρ is, in general, unknown. We call such a
2-dimensional representation an “icosahedral representation”. The published
literature contains only eight examples (up to twist) of odd icosahedral Galois
representations that are known to satisfy Artin’s conjecture: one of conductor
800 = 25 · 52 (see [2]), and seven of conductors: 2083, 22 · 487, 22 · 751, 22 ·
887, 22 · 919, 25 · 73, and 25 · 193 (see [8]).

After the first draft of this paper was written, the preprint [3] appeared,
which contains a general theorem that yields infinitely many (up to twist) mod-
ular icosahedral representations. However, we feel that our work, although much
less powerful, is still of some worth, because it gives an effective computational
approach to proving that certain mod 5 representations are modular, without
computing any spaces of weight 1 forms or using effective versions of the Cheb-
otarëv density theorem. We also note that the main theorem of [3] does not
apply to any of the examples considered in the present paper. Very recently, the
preprint [17] appeared, which gives local conditions under which an icosahedral
representation is modular. In particular, [17] also proves that the first three ex-
amples in the present paper, of conductors 1376, 2416, 3184, are modular; these
correspond to the first, third, and fourth equations at the end of [17]. However,
[17] does not apply to our remaining five examples.

In this paper we give eight new examples of modular icosahedral represen-
tations that were computed by applying the main theorem of [4] to the mod 5
reduction of ρ. We verify modularity mod 5 on a case-by-case basis. Later
we shall explain our approach more carefully, but let us briefly summarise it
here. By [4], the problem is to show that the mod 5 reduction of ρ is modular.
We do this by finding a candidate mod 5 modular form at weight 5 and then,
using the table of icosahedral extensions of Q in [8] and what we know about
the 5-adic representation attached to our candidate form, we deduce that the
mod 5 representation attached to our candidate form must be the reduction
of ρ. In particular, this paper gives a computational methods for checking the
modularity of certain mod 5 representations whose conductors are not too large.
We now give more details.

In each of our examples it is easy to compute a few Hecke operators and
be morally convinced that a mod 5 representation should be modular; it is
far more difficult to prove this. Effective variants of the Chebotarev density
theorem require that we check vastly more traces of Frobenius than is practical.
Instead we use the Local Langlands theorem for GL2, the theory of companion
forms, and Table 2 of [8], to provide proofs of modularity in certain cases.

More precisely, let K be an icosahedral extension of Q that is not totally
real, and consider a minimal lift ρ : GQ → GL2(C) of

GQ → Gal(K/Q) ≈ A5 ⊂ PGL2(C);

the lift is minimal in the sense that its conductor is minimal. Assume that 5
does not ramify in K, and that a Frobenius element at 5 in Gal(K/Q) does not
have order 1 or 5. Inspired by the possibility that ρ is modular, we search for a
mod 5 modular form of weight 5 whose existence would be forced by modularity
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of ρ. Indeed, we find a candidate mod 5 form f , and then prove that the
fixed field of the kernel of the projective mod 5 representation associated to a
certain twist of f must be K. This proves that the mod 5 reduction of a twist
of ρ is modular, and the main theorem of [4] then implies that ρ is modular.
We carried out this program for icosahedral representations of the following
conductors: 1376 = 25 ·43, 2416 = 24 ·151, 3184 = 24 ·199, 3556 = 22 ·7 ·127,
3756 = 22 · 3 · 313, 4108 = 22 · 13 · 79, 4288 = 26 · 67, and 5373 = 33 · 199.

We choose an icosahedral field K and representation ρ, then proceed as
follows:

1. Search for a form f ∈ S5(N, ε; F5) whose associated mod 5 Galois repre-
sentation looks like it is the mod 5 reduction of ρ.

2. Twist f to obtain an eigenform g with coefficients in F5.
3. Prove that ρg is unramified at 5 by finding a companion form.
4. Prove that the image of proj ρg is A5 by ruling out all other possibilities.
5. Prove that the fixed field L of proj ρg has root field of discriminant at

most 20832, so L is in Table 2 of [8]; deduce that L = K.
6. Apply the main theorem of [4] to a lift of ρ = ρg to conclude that ρ is

modular.

1 Modularity of an icosahedral representation
of conductor 1376 = 25 · 43

In this section we prove the following theorem.

Theorem 1.1. The icosahedral representations whose corresponding icosahe-
dral extension is the splitting field of x5 +2x4 +6x3 +8x2 +10x+8 are modular.

Let K be the splitting field of h = x5 +2x4 +6x3 +8x2 +10x+8. The Galois
group of K is A5, so we obtain a homomorphism GQ → A5 ⊂ PGL2(C); let ρ :
GQ → GL2(C) be a minimal lift, minimal in the sense that the Artin conductor
of ρ is minimal. By Table A5 of [2], the conductor of ρ is N = 1376 = 25 · 43.
Since h ≡ (x− 1)(x2 − x+ 1)(x2 − x+ 2) (mod 5), and disc(h) is coprime to 5,
any Frobenius element at 5 in Gal(K/Q) has order 2.

We use the notation of Tables 3.1 and 3.2 of [2, pg. 46]; from Table 3.2 we
see that the type of ρ at 2 is 17 and the type at 43 is 2. The mod N Dirichlet
character ε = det(ρ) factors as ε = ε2 ·ε43 where ε2 is a character mod 25 and ε43

is a character mod 43. Corresponding to each type in Buhler’s table, there is a
character, and fortunately Buhler’s level 800 example also was of type 17 at 2
(see the first line of [2, Table 3.2]). By [2, pg. 80] ε2 is the unique character of
conductor 4 and order 2. A local computation shows that the image of ε43 has
order 3.

If ρ is modular, then there is a weight 1 newform f? ∈ S1(N, ε; Q) that gives
rise to ρ. Suppose for the moment that ρ is modular, so that f? exists. Choose
a prime of Z lying over 5, and denote by f? the reduction of f? modulo this
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prime. The Eisenstein series E4 ∈ M4(1; F5) is congruent to 1 modulo 5, so
E4 · f? ∈ S5(N, ε; F5) has the same q-expansion as f?. Using a computer, we
can search for a form f ∈ S5(N, ε,F5) that has the same q-expansion as the
conjectural form E4 · f?.

Instead of multiplying f? by E4, we could have multiplied it by an Eisenstein
series of weight 1, level 5, and character ε′. We used E4 because the dimension of
S5(N, ε; F5) is 696 whereas the dimension of the relevant space S2(5 · 1376, ε43)
of weight 2 cusp forms is 1040.

1.1 Searching for the newform f

Using modular symbols (see Section 3.1) we compute (at least up to semi-
simplification) the space S5(1376, ε; F25). Note that there is injective map from
the image of ε into F∗25. By computing the kernels of various Hecke operators
on this space, we find f . In the following computations, we represent nonzero
elements of F25 as powers of a generator α of F∗25, which satisfies

α2 + 4α+ 2 = 0.

Our character ε43 was represented as the map sending (1, 3) ∈ (Z/25Z)∗ ×
(Z/43Z)∗ to 2α + 1. Note that 3 is a primitive root mod 43, and that 2α + 1
has order 3.

If the least common multiple of the degrees of the factors of the polynomial h
modulo an unramified prime p is 2, then Frobp ∈ Gal(K/Q) has order 2. The
minimal polynomial of ρ(Frobp) ∈ GL2(C) is then x2 − 1, so ρ(Frobp) has
trace 0. The first three primes p - 5 · 1376 such that ρ(Frobp) has order 2
are p = 19, 31, 97. We computed the mod 5 reduction S5(1376, ε; F25)+ of the
Z5[ζ3]-lattice of modular symbols of level 1376 and character ε̃ where complex
conjugation acts as +1. Here ε̃ denotes the Teichmüller lift of ε.

Let V be the intersection of the kernels of T19, T31, and T97 inside of the space
S5(1376, ε; F25)+ of mod 5 modular symbols. The space V is 8-dimensional, and
no doubt all the eigenforms in this space give rise to ρ or one of its twists. One
of the eigenvalues of T3 on this space is α16, and the kernel V1 of T3 − α16

is 2-dimensional over F25. The Hecke operator T5 acted as a diagonalisable
matrix on V1, with eigenvalues α10 and α22, so the corresponding two systems
of eigenvalues must correspond to mod 5 modular eigenforms, and furthermore
we must have found all mod 5 modular eigenforms of this level, weight and
character, such that a19 = a31 = 0 and a3 = α16.

Remark 1.2. The careful reader might wonder how we know that the systems
of mod 5 eigenvalues really do correspond to mod 5 modular forms, and not to
perhaps some strange mod 5 torsion in the space of modular symbols. However,
we eliminated this possibility by computing the dimension of the full space of
mod 5 modular symbols where complex conjugation acts as +1, and checking
that it equals 696, the dimension of S5(1376, ε̃,C), which we computed using
the formula in [5].
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Table 1: Eigenvalues of f

2 0
3 α16

5 α22

7 α14

11 4
13 α14

17 α14

19 0
23 α16

29 α8

31 0
37 α10

41 1
43 α10

47 1
53 α22

59 4
61 α14

67 α4

71 α20

73 α2

79 α20

83 α4

89 α10

97 0
101 α8

103 α14

107 0
109 α10

113 2
127 0
131 2

137 0
139 α22

149 α4

151 1
157 α14

163 0
167 α22

173 4
179 α2

181 α14

191 α10

193 4
197 0
199 3
211 0
223 0

227 α10

229 0
233 α14

239 0
241 α2

251 α2

257 3
263 α16

269 2
271 α8

277 0
281 α16

283 0
293 3
307 α4

311 α22

313 0
317 0
331 α14

337 0
347 α16

349 α4

353 0
359 0
367 α22

373 0
379 3
383 3
389 1
397 α16

401 0
409 2

419 3
421 α20

431 4
433 α4

439 α20

443 0
449 0
457 0
461 0
463 α10

467 0
479 0
487 α8

491 α2

499 α20

503 α2

509 α8

521 α10

523 α14

541 α20

547 α22

557 3
563 1
569 α16

571 α22

577 α14

587 α20

593 0
599 α22

601 0
607 α16

613 2

Let f be the eigenform in V1 that satisfies a5 = α22; the q-expansion of f
begins

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · · .

Further eigenvalues are given in Table 1. The primes p in the table such
that ap = 0 are exactly those predicted by considering the splitting behav-
ior of h. This is strong evidence that ρ is modular, and also that our modular
symbols algorithm have been correctly implemented.

1.2 Twisting into GL(2,F5)

Although there is a representation ρf : GQ → GL(2,F25) attached to f , it is
difficult to say anything about its image without further work. We use a trick
to show that the image of ρf is small. Firstly, for a character χ : GQ → F5,
let χ̃ denote its Teichmüller lift to Q5. By a result of Carayol, there is a
characteristic 0 eigenform f̃ ∈ S5(N, ε̃; Q5) lifting f . The twist g̃ = f̃ ⊗ ε̃43

is, by [14, Prop. 3.64], an eigenform in S5(43N, ε̃2; Q5), and its reduction is a
form g ∈ S5(43N, ε2,F25). The eigenvalues ap(g) = ap(f)ε43(p), for the first
few p - 5N , are given in Table 2.

Proposition 1.3. Let g = f ⊗ ε43. Then ap(g) ∈ F5 for all p - `N .

Proof. Consider an eigenform f̃ ∈ S5(N, ε̃; Q5) lifting f as above. Associated
to f̃ there is an automorphic representation π = ⊗′vπv of GL(2,A), where A
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Table 2: Eigenvalues of g = f ⊗ ε43

2 ∗
3 1
5 ∗
7 2

11 4
13 2
17 2
19 0
23 1
29 1
31 0
37 3
41 1
43 ∗
47 1
53 2

59 4
61 2
67 4
71 4
73 3
79 4
83 4
89 3
97 0

101 1
103 2
107 0
109 3
113 2
127 0
131 2

137 0
139 2
149 4
151 1
157 2
163 0
167 2
173 4
179 3
181 2
191 3
193 4
197 0
199 3
211 0
223 0

227 3
229 0
233 2
239 0
241 3
251 3
257 3
263 1
269 2
271 1
277 0
281 1
283 0
293 3
307 4
311 2

313 0
317 0
331 2
337 0
347 1
349 4
353 0
359 0
367 2
373 0
379 3
383 3
389 1
397 1
401 0
409 2

419 3
421 4
431 4
433 4
439 4
443 0
449 0
457 0
461 0
463 3
467 0
479 0
487 1
491 3
499 4
503 3

509 1
521 3
523 2
541 4
547 2
557 3
563 1
569 1
571 2
577 2
587 4
593 0
599 2
601 0
607 1
613 2

617 0
619 4
631 4
641 4
643 1
647 4
653 1
659 2
661 2
673 1
677 4
683 0
691 1
701 2
709 4
719 4

is the adèle ring of Q. Because 43 || N , and 43 divides the conductor of ε, we
see that the local component π43 of π at 43 must be ramified principal series.
By Carayol’s theorem, ρf̃ |D43 ∼

(
Ψ1 0
0 Ψ2

)
with, without loss of generality, Ψ2

unramified. We have (Ψ1 ·Ψ2)|I43 = ε̃|I43 = ε̃43, therefore, ρf̃ |I43 ∼
(
ε̃43 0
0 1

)
.

Now twist f̃ by ε̃−1
43 ; we find that ρf̃⊗ε̃−1

43
|I43 ∼

(
1 0
0 ε̃−1

43

)
. In particular, there

is an eigenform f̃ ′ ∈ S5(N, ε̃2ε̃
−1
43 ,Q5) whose associated Galois representation is

the twist by ε̃−1
43 of that of f̃ (recall that N = 1376 and so 43 divides N exactly

once). Let f ′ denote the mod 5 reduction of f̃ ′. Then one checks easily that
f ′ ∈ S5(N, ε2ε

−1
43 ,F25) = S5(N, ε5,F25).

For all primes p - 5N we have ap(f ′) = ε43(p)−1ap(f). In particular, we
have ap(f ′) = 0 for p = 19, 31. Also, ε43(3) = α8 and ε43(5) = α8, so

a3(f ′) = α16/α8 = α8 = (α16)5

a5(f ′) = α22/α8 = α14 = (α22)5.

Now if σ is the non-trivial automorphism of F25, then σ(f ′) and f both lie in
S5(1376, ε; F25) and have same ap for p = 3, 5, 19, 31, so they are equal because
we found f by computing the unique eigenform with given ap for p = 3, 5, 19, 31.
So g = f ⊗ ε43 = σ(f)⊗ ε2

43. Thus for all p - 5N , we see that ap(g) = ap(f)5ε2
43

has fifth power ap(g)5 = ap(f)25ε10
43 = ap(f)ε43 = ap(g).
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1.3 Proof that ρg is unramified at 5

We begin with a generalisation of [16]. Let M > 4 be an integer, and let
h =

∑
n≥1 cnq

n be a normalised cuspidal eigenform of some weight k ≥ 1,
level M and character χ, defined over some field of characteristic not dividingM .
Even though the base field might not have characteristic zero, we may still define
the conductor of χ to the the largest divisor f of M such that χ factors through
(Z/fZ)×. Let I be a set of primes, with the property that for all p in I, one of
the following conditions hold:

(i) p divides M but p does not divide M/ cond(χ), or
(ii) p divides M exactly once, and h is p-new, in the sense that there is no

eigenform h′ of level M/p such that the Tn-eigenvalues of h and h′ agree for all
n prime to p.

Let C denote the orbit of the cusp ∞ in X1(M) under the action of the
group generated by wp for p ∈ I, and the Diamond operators 〈d〉M . The orbit
of ∞ under the Diamond operators has size φ(M)/2, and each wp increases the
size of the orbit by a factor of 2. In this situation, we have

Lemma 1.4. The first t terms of the q-expansion of h at any cusp in C are
determined by M , k, χ, cp for p in I, and cn for 1 ≤ n ≤ t.

Remark 1.5. Our proof is just a translation of Corollary 4.6.18 of [13] into the
language of moduli problems (Miyake’s argument technically is only valid over
the complex numbers).

Proof. If J ⊆ I is any subset, and wJ denotes the product of wp for p ∈ J ,
then h|wJ is an eigenform for all the Diamond operators, and this observation
reduces the proof of the lemma to showing that for p ∈ I, if h|wp =

∑
n dnq

n,
then dj for 1 ≤ j ≤ n and dq for all q ∈ I are determined by M , k, χ, p, cj for
1 ≤ j ≤ n and cq for all q ∈ I.

We first deal with primes p of the form (i). Say M = pmR, where R is prime
to p. Thinking of h as a rule for attaching k-fold differentials to elliptic curves
equipped with points of order pm and R, we have by definition that

h(Gm/q
Z, ζ, ζR) =

(∑
cnq

n

)
(dt/t)k,

where ζ = ζpm and ζR are fixed pmth and Rth roots of unity in Gm which
correspond to the cusp ∞, and dt/t is the canonical differential on the Tate
curve Gm/q

Z. We normalise things such that

h(Gm/q
pmZ, q, ζR) =

(∑
dnq

n

)
(dt/t)k,

and remark that because h is an action for the diamond operators, we do not
have to worry too much about whether this corresponds to the standard nor-
malisation of the wp-operator.
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We recall that the operator pUp in this setting can be thought of as being
defined by the rule:

(pUph)(E,P,Q) =
∑
C

π∗h(E/C,P ,Q),

where C runs through the subgroups of E of order p which have trivial inter-
section with 〈P 〉, and π denotes the canonical projection E → E/C. We see
that

(pcp)m
(∑

dnq
n
)
(dt/t)k = (pmUpmh)(Gm/q

pmZ, q, ζR)

=
pm−1∑
c=0

πc ∗ h(Gm/〈qp
m

, ζqc〉, q, ζR),

where π denotes the canonical projection from Gm/〈qp
m〉 to the appropriate

quotient. This last sum can be written as a double sum

∑
c∈(Z/pmZ)×

π∗h(Gm/〈qp
m

, ζqc〉, q, ζR) +
pm−1−1∑
a=0

π∗h(Gm/〈qp
m

, ζqpa〉, q, ζR)

=
∑

b∈(Z/pmZ)×

π∗h(Gm/〈qp
m

, ζ−bq〉, q, ζR) + pm−1π∗Upm−1h(Gm/〈qp
m

, ζp
m−1
〉, q, ζR)

=
∑

b∈(Z/pmZ)×

π∗h(Gm/〈ζ−bq〉, ζb, ζR) + (pcp)m−1π∗h(Gm/〈qp
m

, ζp
m−1
〉, q, ζR)

=
∑
b

χp(b)
∑
n≥1

cn(ζ−bq)n(dt/t)k + pk(pcp)m−1π∗h(Gm/〈qp
m+1
〉, qp, ζpR),

where we have written χ = χRχp, for χR a character of level R and χp a
character of level pm. We deduce that

(pcp)m
(∑

dnq
n
)
(dt/t)k − pk(pcp)m−1χR(p)π∗h(Gm/〈qp

m+1
〉, qp, ζR)

=
(∑

n

(∑
b

χp(b)ζ−bn
)
cnq

n

)
(dt/t)k

=W (χp)
(∑
p-n

χp(−n)−1cnq
n
)
(dt/t)k

where W (χp) =
∑
b∈(Z/pmZ)× χp(b)ζ

b can be checked to be nonzero because the
conductor of χp is pm. Hence

(pcp)m
∑
n

dnq
n−pk(pcp)m−1χR(p)

∑
n

dnq
np = W (χp)χp(−1)

∑
p-n

χp(n)−1cnq
n.

Equating coefficients of q we deduce that W (χp)χp(−1) = (pcp)md1, and be-
cause h|wp is an eigenform for Tn for all n prime to p, with eigenvalues de-
termined by χ and cn, we deduce that we can determine dn for n prime to



Buzzard-Stein (August 15, 2000) 9

p from cn. It remains to establish what dp is, and equating coefficients of qp

in the above equation gives us that (pcp)mdp = pk(pcp)m−1χR(p)d1 and hence
that dp is determined by χ and cp. Note that as a consequence we see that
dp/d1 = pk−1χR(p)/cp, a classical formula if the base field is the complexes.

Now we deal with primes of the form (ii) (note that we never use this case
in the rest of the paper). We think of h as a rule associating k-fold differentials
to triples (E,C,Q) where C a cyclic subgroup of order p and Q a point of
order R = M/p. Because h is p-new, the trace of h down to X1(M/p) must be
zero, and hence we see that for any elliptic curve E equipped with a point Q of
order R, ∑

C

π∗h(E/C,E[p]/C,Q) = 0.

As before, normalise things so that

h(Gm/q
Z, µp, ζR) =

(∑
n

cnq
n

)
(dt/t)k

and

h(Gm/q
pZ, 〈q〉, ζR) =

(∑
n

dnq
n

)
(dt/t)k.

The fact that the trace of h is zero implies that

(pUp)h(Gm/q
pZ, 〈q〉, ζR) + π∗h(Gm/q

Z, µp, ζR) = 0,

and hence that
cp
∑

dnq
n + pk−1

∑
cnq

n = 0

from which we deduce that the dn can be read off from cp and the cn.

Remark 1.6. The size of C is φ(M).2|I|−1, and the usefulness of this lemma is
that if h1 and h2 are two normalised eigenforms of the same level, weight and
character as above, both new at all primes in I, and the coefficients of qn in the
q-expansions of h1 and h2 agree for n ∈ I and n ≤ t, then h1 − h2 has a zero of
order at least t + 1 at all cusps in C, and in particular if φ(M).2|I|−1(t + 1) >
k/12[SL2(Z) : Γ1(M)] = deg(ωk) on X1(M) then h1 = h2. Using the fact that
[Γ0(M) : Γ1(M)] = φ(M)/2, we deduce

Corollary 1.7. Let h1 and h2 be two normalised eigenforms as above. If the
coefficients of qn in the q-expansions of h1 and h2 agree for all primes in I and
for all n ≤ k

12 [SL2(Z) : Γ0(M)]/2|I| then h1 = h2.

Remark 1.8. One can certainly do better than this corollary in many cases. For
example, when n > 1 and pn exactly divides both the level of an eigenform and
the conductor of its character, then one can compute the q-expansion of the
eigenform at many “middle cusps” too, and hence increase the size of C in the
result above.
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We now go back to the explicit situation we are concerned with. Although g
is an eigenform of level 59168 = 25 · 432, we can still consider the corresponding
representation ρg : GQ → GL(2,F5), and then directly analyze its ramification.

Proposition 1.9. The representation ρg is unramified at 5.

Proof. Continuing the modular symbols computations as above, we find that V1

is spanned by the two eigenforms

f = q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + · · ·
f1 = q + α16q3 + α10q5 + α14q7 + α14q9 + 4q11 + · · · .

For p 6= 5 and p ≤ 997, we have ap(f1) = ap(f). To check that ap(f) =
ap(f1) for all p 6= 5, it suffices to show that the difference f − f1 has q-
expansion involving only powers of q5; for this we use the θ-operator q ddq :
S5(1376, ε,F25) → S11(1376, ε; F25). Since θ sends normalized eigenforms to
normalized eigenforms, it suffices to check that the subspace of S11(1376, ε; F25)
generated by θ(f) and θ(f1) has dimension 1. Corollary 1.7 implies that it suf-
fices to verify that the coefficients ap(θ(f)) and ap(θ(f1)) are equal for all

p ≤ 11
12
· [SL2(Z) : Γ0(1376)] · 1

2
= 968.

The eigenform f must be new because we computed it by finding the intersec-
tions of the kernels of Hecke operators Tp with p - 1376; if f were an oldform
then the intersection of the kernels of these Hecke operators would necessarily
have dimension greater than 1. Because it takes less than a second to compute
each ap(θ(f)), we were easily able to verify that the space generated by θ(f)
and θ(f1) has dimension 1.
Remark 1.10. It is possible to avoid appealing to Corollary 1.7 by using one of
the following two alternative methods:

1. Define θ directly on modular symbols and compute it.

2. Compute the intersection⋂
p≥2

ker(Tp − pap(f)) ⊂ S11(1376, ε; F25).

Since θ(f) and θ(f1) both lie in the intersection, the moment the dimension
of a partial intersection is 1, it follows that θ(f − f1) = 0.

We successfully carried out both alternatives. For the first, we showed that θ on
modular symbols is induced by multiplication by X5Y − Y 5X. For the second,
we find that after intersecting kernels for p ≤ 11, the dimension is already 1.
The first of these two methods took much less time than the second.
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Next we use that θ(f − f1) = 0 to show that ρg is unramified, thus finishing
the proof of the proposition. Since f is ordinary, Deligne’s theorem (see [9, §12])
implies that

ρf |D5 ∼
(
α ∗
0 β

)
over F5

with both α, β unramified, α(Frob5) = ε(5)/a5 = α8/α22 = α10, and β(Frob5) =
α22. Since ap(f1) = ap(f), for p 6= 5, we have

ρf |D5 ∼ ρf1 |D5 ∼
(
α′ ∗
0 β′

)
with α′(Frob5) = α8/α10 = α22 and β′(Frob5) = α10; in particular, α′ = β.
Thus ρf |D5 contains α⊕β, so ρf |D5 ∼ α⊕β and hence there is a choice of basis
so that ∗ = 0.

1.4 The image of proj ρg

Proposition 1.11. The image of proj ρg is A5.

Proof. The imageH of proj ρg in PGL2(F5) is easily checked to lie in PSL2(F5) ∼=
A5 because of what we know about the determinant of ρg. Hence H is a sub-
group of A5 that contains an element of order 2 (complex conjugation) and
an element of order 3 (for example, ρg(Frob7) has characteristic polynomial
x2 − 2x− 1). This proves that H is isomorphic to either S3, A4, or A5. Let L
be the number field cut out by H. If L were an S3-extension, then there would
be a quadratic extension contained in it which is unramified outside 2 · 5 · 43;
it is furthermore unramified at 5 by the previous section and unramified at 43
because I43 has order 3. Thus it is one of the three quadratic fields unramified
outside 2. In particular, the trace of Frobp would be zero for all primes in a
certain congruence class modulo 8. However, there are primes p congruent to 3,
5, and 7 mod 8 such that ap(g) 6= 0, e.g., 3, 7, and 13.

If H were isomorphic to A4, then let M denote the cyclic extension of de-
gree 3 over Q contained in L. Now M is unramified at 2 and 5, and hence is
the subfield of Q(ζ43) of degree 3. Choose p - 1376 · 5 that is inert in M , i.e.,
so that p is not a cube mod 43. The order of ρg(Frobp) in GL2(F5) must be
divisible by 3. However, a quick check using Table 2 shows that this is usually
not the case, even for p = 3.

1.5 Bounding the ramification at 2 and 43

Let L be the fixed field of ker(proj(ρg)). We have just shown that Gal(L/Q) is
isomorphic to A5. By a root field for L, we mean a non-Galois extension of Q
of degree 5 whose Galois closure is L.

Proposition 1.12. The discriminant of a root field for L divides (43 · 8)2 =
3442, and in particular, L must be mentioned in Table 1 of [8, pg 122].
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Proof. The analysis of the local behavior of ρf at 43 given in Proposition 1.3
shows that the inertia group at 43 in Gal(L/Q) has order 3. Using Table 3.1
of [2], we see that if Gal(L/Q) ∼= A5 then it must be “type 2” at 43, and hence
the discriminant of a root field of L, that is, of a non-Galois extension of Q of
degree 5 whose Galois closure is L, must be 432 at 43.

At 2 the behavior of ρ is more subtle and we shall not analyze it fully. But
we can say that, because ρ has arisen from a form of level 1376 = 25.43, we
must be either of type 5 or one of types 14–17. In particular, the discriminant
at 2 of a root field for L will be at most 26.

Finally, L is unramified at all other primes, because ρ is. Hence the discrim-
inant of a root field for L, assuming that Gal(L/Q) ∼= A5, divides (43.8)2 =
3442.

We know that L is an icosahedral extension of Q with discriminant dividing
432 · 26. Table 1 of [8, pg 122] contains all icosahedral extensions, such that the
discriminant of a root field is bounded by 20832. The table must contain L;
there is only one icosahedral extension with discriminant dividing 432 · 26, so
L = K.

1.6 Obtaining a classical weight one form

We have shown that a twist of the icosahedral representation ρ : GQ → GL(2,C),
nobtained by lifting GQ → Gal(K/Q) ≈ A5, has a mod 5 reduction ρg : GQ →
GL2(F5) that is modular. Since ρ ramifies at only finitely many primes, and ρ
is unramified at 5 with distinct eigenvalues, [4] implies that ρ arises from a
classical weight 1 newform.

2 More examples

The data necessary to deduce modularity of each of our eight icosahedral ex-
amples is summarized in Tables 3–6.

The notation in Table 3 is as follows. The first column contains the con-
ductor. The second column contains a 5-tuple [a4, a3, a2, a1, a0] such that the
A5-extension is the splitting field of the polynomial h = x5 + a4x

4 + a3x
3 +

a2x
2 +a1x+a0. The column labeled ord(Frob5) contains the order of the image

of Frob5 in A5. The next column, which is labeled “p with ap = 0”, contains
the first few p such that ap is easily seen to equal 0 by considering the splitting
of h mod p. The ε column contains the character of the representation, where
the notation is as follows. Write (Z/NZ)∗ as a product of cyclic groups cor-
responding to the prime divisors of N in ascending order, and then the tuples
give the orders of the images of these cyclic factors; when 8 | N , there are two
cyclic factors corresponding to the prime 2. Finally, the last column records the
dimension of S5(Γ1(N), ε).

The notation in Table 4 is as follows. The first column contains the conduc-
tor. The second column contains an eigenform that was found by first intersect-
ing the kernels of the Hecke operators Tp with p as in Table 3, and then locating
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an eigenform. In each case, a companion form was found, by computing ap(f)
for p ≤ bound, where bound is the bound from Corollary 1.7.

Table 5 shows that the fixed field of the image of each proj(ρg) is icosahedral.
The first column contains the conductor N . The second column contains a
twist g of f such that ap(g) ∈ F5 for all p - 5N . The third column contains
a Frobp such that proj(ρg(Frobp)) has order 3, along with the characteristic
polynomial of ρg(Frobp). As in the proof of Proposition 1.11, the other two
boxes give data that allows us to deduce that the fixed field of the image of
proj(ρg) is icosahedral. The case 5373 must be treated separately, because there
are three possibilities M1, M2, and M3 for the cubic field M of the analogue of
Proposition 1.11. For M1 we find a prime p such that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 1), (7, 1)}

with ρg(Frobp) of order not divisible by 3; for this, p = 2 suffices, since the char-
acteristic polynomial of ρg(Frob2) is (x + 2)2 and (p2 mod 9, p66 mod 199) =
(4, 106). For M2 we find a prime p such that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 92), (7, 106)}

with ρg(Frobp) of order not divisible by 3; again, p = 2 suffices. For M3 we find
a prime p such that

(p2 mod 9, p66 mod 199) 6∈ {(1, 1), (4, 106), (7, 92)}

with ρg(Frobp) of order not divisible by 3; here, p = 13 suffices, as the character-
istic polynomial of ρg(Frobp) is (x+4)2 and (p2 mod 9, p66 mod 199) = (7, 106).

Table 6 gives upper bounds on the ramification of the fixed field of the image
of proj(ρg). These bounds were deduced using Table 3.1 of [2] by restricting the
possible “types” using information about the character ε. Note that though the
bounds are not sharp, e.g., the discriminant of the representation of conductor
2416 is 24 · 1512, they are all less than 20832, so the corresponding field must
appear in Table 2 of [8].

3 Computing mod p modular forms

3.1 Higher weight modular symbols

The second author developed software that computes the space of weight k
modular symbols Sk(N, ε), for k ≥ 2 and arbitrary ε. See [12] for the standard
facts about higher weight modular symbols, and [15] for a description of how to
compute with them.

Let K = Q(ε) be the field generated by the values of ε. The cuspidal
modular symbols Sk(N, ε) are a finite dimensional vector space over K, which
is generated by all linear combinations of higher weight modular symbols

XiY k−2−i{α, β}
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Table 3: Data on icosahedral representations mod 5

N h ord(Frob5) p with ap = 0 ε dimS5(N, ε)
1376 [2, 6, 8, 10, 8] 2 19, 31, 97 [2, 1, 3] 696
2416 [0,−2, 2, 5, 6] 2 53, 97, 127 [2, 1, 3] 1210
3184 [5, 8,−20,−21,−5] 2 31, 89, 97 [2, 1, 3] 1594
3556 [3, 9,−6,−4,−40] 3 19, 29, 89 [1, 2, 3] 2042
3756 [0,−3, 10, 30,−18] 3 17, 61, 67 [1, 2, 3] 2506
4108 [4, 3, 9, 4, 5] 3 17, 23, 31, 89 [1, 3, 2] 2234
4288 [4, 5, 8, 3, 2] 3 19, 23, 47 [1, 2, 3] 2164
5373 [2, 1, 7, 23,−11] 2 7, 23, 37, 79, 89 [2, 3] 2394

Table 4: The newform f and the companion form bound

N f bound
1376 q + α16q3 + α22q5 + α14q7 + α14q9 + 4q11 + α14q13 + · · · 968
2416 q + 3q3 + α22q5 + α16q7 + α4q11 + α2q13 + α16q15 + · · · 1672
3184 q + α16q3 + 3q5 + α22q7 + α14q9 + 3q11 + α22q13 + · · · 2200
3556 q + α16q3 + α14q5 + α10q7 + α14q9 + α2q11 + α22q13 + · · · 1408
3756 q + α14q3 + α14q5 + 3q7 + α4q9 + α16q11 + α10q13 + · · · 1727
4108 q + α16q3 + α11q5 + α20q7 + α14q9 + α10q11 + 4q13 + · · · 1540
4288 q + 3q3 + α14q5 + α20q7 + 3q9 + α20q11 + α16q13 + · · · 2992
5373 q + α16q2 + α14q4 + 4q5 + 3q8 + α4q10 + 2q11 + · · · 3300
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Table 5: Verification that the image of proj(ρg) is A5

Find a Frobenius element with projective order 3.

N g proj. order 3 charpoly
1376 f ⊗ ε43 Frob7 x2 − 2x− 1
2416 f ⊗ ε151 Frob19 x2 + 2x− 1
3184 f ⊗ ε199 Frob7 x2 + 3x+ 4
3556 f ⊗ ε127 Frob13 x2 + 3x+ 4
3756 f ⊗ ε313 Frob23 x2 + 2x+ 4
4108 f ⊗ ε13 Frob29 x2 + 3x+ 4
4288 f ⊗ ε67 Frob11 x2 + x+ 1
5373 f ⊗ ε199 Frob11 x2 + 3x+ 4

Not S3: For all t ∈ T , find unramified p s.t. t 6≡ � mod p and ap(g) 6= 0.

N T p
1376 {−1,−2} 3, 7
2416 {−1,−2} 3, 7
3184 {−1,−2} 3, 7
3556 {−1,−2,−7,−14} 3, 13, 3, 11
3756 {−1,−2,−3,−6} 7, 7, 11, 13
4108 {−1,−2,−79,−158} 3, 7, 3, 7
4288 {−1,−2} 3, 7
5373 {−3} 11

Not A4: Unramified p, not cube mod `, order of ρg(Frobp) not divisible by 3.

N ` p charpoly(ρg(Frobp))
1376 43 3 (x+ 2)2

2416 151 7 (x+ 2)2

3184 199 3 (x+ 2)2

3556 127 3 (x+ 2)2

3756 313 11 (x+ 2)2

4108 13 3 (x+ 2)2

4288 67 7 (x+ 3)2

5373 — (see text)
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Table 6: Bounding the discrimant of the fixed field of proj(ρg)

N Bound on discriminant
1376 26 · 432

2416 26 · 1512

3184 26 · 1992

3556 22 · 72 · 1272

3756 22 · 32 · 3132

4108 22 · 132 · 792

4288 26 · 672

5373 34 · 1992

that lie in the kernel of an appropriate boundary map. There is an involution ∗
that acts on Sk(N, ε), and Sk(N, ε)+⊗K C is isomorphic, as a module over the
Hecke algebra, to the space Sk(N, ε; C) of cusp forms.

Fix k = 5. In each case considered in this paper, there is a prime ideal λ
of the ring of integers O of K such that O/λ ∼= F25. Let L be the O-module
generated by all modular symbols of the form XiY 3−i{α, β}, and let

S5(N, ε; F25) = (L ⊗O F25) ∩ S5(N, ε).

This is the space that we computed. The Hecke algebra acts on S5(N, ε; F25),
so when we find an eigenform we find a maximal ideal of the Hecke algebra.

As an extra check on our computation of S5(N, ε; F25), we computed the
dimension of S5(N, ε; C) using both the formula of [5] and the Hijikata trace
formula (see [10]) applied to the identity Hecke operator.

3.2 Complexity

We implemented the modular symbols algorithms mentioned above in Magma

(see [6]) because of its robust support for linear algebra over small finite fields.
The following table gives a flavor of the complexity of the machine compu-

tations appearing in this paper. The table indicates how much CPU time on a
Sun Ultra E450 was required to compute all data for the given level, including
the matrices Tp on the 2-dimensional spaces, for p < 2000. For example, the
total time for level N = 1376 was 6 minutes and 58 seconds.
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N time (minutes)

1376 6:58
2416 10:42
3184 14:16
3556 19:55
3756 27:47
4108 23:11
4288 15:18
5376 24:49
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