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Abstract

We formulate a conjecture which predicts, in many cases, the precise p-
adic valuations of the eigenvalues of the Hecke operator Tp acting on spaces
of classical modular forms. The conjecture has very concrete consequences
in the classical theory, but can also be thought of as saying that there is a
lot of unexplained symmetry in many of the Coleman-Mazur eigencurves.

Introduction

Let N ≥ 1 be a fixed integer, and let p denote a fixed prime not dividing N . If
k ∈ Z then there is a complex vector space Sk(Γ0(Np)) of cusp forms of weight k
and level Np. This space is finite-dimensional over the complex numbers and
comes equipped with an action of the Hecke operator Up, an endomorphism
whose eigenvalues are non-zero complex numbers. The characteristic polynomial
of Up has integer coefficients, which implies that the eigenvalues are algebraic
integers. Hence we can consider the eigenvalues as lying in C or in Ql for any
prime l.

The Up-eigenvalues fall naturally into two classes, p-old ones and p-new ones.
The p-old eigenvalues are the roots of X2− apX + pk−1, where ap runs through
the eigenvalues of Tp acting on Sk(Γ0(N)). A deep theorem of Deligne says
that the p-old eigenvalues all have complex absolute value p(k−1)/2. The p-new
eigenvalues are what is left, and it is well-known that these eigenvalues are
square roots of pk−2. Hence the complex valuations of these Up-eigenvalues are
known in every case. Moreover, from these definitions it is clear that if l 6= p is
a prime then the Up-eigenvalues are all l-adic units.

From this point of view, the question that remains about valuations of eigen-
values is:

Question. What can one say about the p-adic valuations of the eigenvalues
of Up?

The term “slopes” is used nowadays to refer to these valuations. A study
of the simplest special case, namely N = 1 and p = 2, shows that the answer
is nowhere near as simple as the other cases. The forms which are 2-new at
weight k will all have slope k−2

2 and this leaves us with the oldforms, whose
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slopes we can easily compute from the theory of the Newton Polygon, if we
know the 2-adic valuations of the eigenvalues of T2 acting on cusp forms of
level 1. The smallest k for which non-zero level 1 cusp forms exist is k = 12;
the space S12(SL2(Z)) is one-dimensional, and T2 acts as multiplication by −24.
Hence the 2-old eigenvalues of U2 at weight 12 and level 2 are the two roots of
X2 + 24X + 211, and these two roots have 2-adic valuations equal to 3 and 8.
Note that 3 6= 8, and so the story is already necessarily different to the complex
and l-adic cases. We include a short table of valuations and slopes for small
weights.

Weight 2-adic valuations of Slopes of
T2-eigenvalues U2 at level 2

at level 1
12 3 3,8
14 6,6
16 3 3,7,12
18 4 4,8,13
20 3 3,9,9,16
22 5 5,10,10,16
24 3,7 3,7,11,16,20
26 4 4,12,12,12,21

From this table, one wonders whether there is any structure at all in the slopes.
However, the purpose of this paper is to suggest that in fact there is a very
precise structure here. In fact, in this paper we explain a completely elementary
conjectural combinatorial recipe, recursive in the weight k, for generating the
above table line by line. In fact, for a large class of pairs (N, p) (including
(1, p) for all primes p < 59) we give a conjectural recipe for the valuations of
the Tp-eigenvalues at level N , and hence the slopes of Up at level Np. We
strongly believe that there should be a recipe for generating the slopes of Up at
level Np for any N and p, given as an input the slopes for level N and weights
at most p + 2. However we have not yet managed to formulate such a recipe
at the present time. In this paper, we offer a recipe only in the case where p is
Γ0(N)-regular, a term that we shall define later.

Before we explain our conjectural recipe, we shall explain what is known
about the slopes of Up, and what has been conjectured before. The first ob-
servation, hinted at by the apparent randomness in the table above, is that to
find structure in the slopes of Up one should, contrary to the complex and l-adic
cases, not consider the slopes at one fixed weight, but let the weight vary. There
are well-known concrete examples of this phenomenon. For example, a theorem
of Hida says that for fixed level, the number of Up-eigenvalues with slope zero
is bounded, and indeed for k ≥ 2 this number depends only on k modulo p− 1
(resp. modulo 2) for p odd (resp. p = 2). As an example of this, we note that
there are no slope zero forms in the table above, and we deduce from Hida’s
theorem that in fact for N = 1 and p = 2 there will never be any slope zero
forms, however high the weight gets.

These theorems about Up-eigenvalues of slope 0 have been generalised by
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Gouvêa and Mazur to an explicit conjecture in [9] about the number of eigen-
values of arbitrary slope as the weight varies. The Gouvêa-Mazur conjecture
says that if M ≥ 0 is any integer, then for k and k′ sufficiently large (which
nowadays means at least M + 2) and congruent modulo (p− 1)pM , the number
of Up-eigenvalues of slope α at weight k and weight k′ should be the same, for
any α ≤ M . Experimental evidence for this conjecture was supplied by Mestre
in the case where N = 1 and p is small.

A few years after this conjecture was made, ground-breaking work of Cole-
man in [4] showed that cuspidal eigenforms naturally lay in p-adic analytic
families, and an analysis by Wan [15] of Coleman’s methods showed that one
could deduce a weaker version of the Gouvêa-Mazur conjectures, namely that
for k and k′ sufficiently large, and congruent modulo (p − 1)pM , the number
of eigenvalues with slope α at these two weights were equal, if α ≤ O(

√
M).

The constants are all explicit, but are an order of magnitude away from the
Gouvêa-Mazur conjecture and it seems that a new idea is needed to get these
methods to produce the constants predicted by the conjecture.

The families in Coleman’s work were beautifully interpolated into a myste-
rious geometric object, constructed by Coleman and Mazur, called an “eigen-
curve”, whose very existence implies deep results about modular forms. One can
compute what are essentially local equations for small pieces of these eigencurves
for explicit p and N , and computations of this nature have been undertaken by
Emerton in [8] and Coleman, Stevens and Teitelbaum in [6], where for N = 1
and p = 2, 3 respectively the authors manage to compute the majority of the
part of the eigencurve with smallest slope. Computations like this have concrete
consequences in the theory—for example, Emerton deduced from his computa-
tions that when N = 1, the smallest slope of U2 was periodic as the weight
increased, repeating the pattern 3, 6, 3, 4, 3, 5, 3, 4 indefinitely (one can see the
first instance of this pattern in the table above, which already indicates that
the table is much too small to be able to indicate what is going on).

The computations of Mestre concerning the Gouvêa-Mazur conjecture were
done about ten years ago, and because computers are currently increasing vastly
in speed, it was clear that one could go much further nowadays. The author’s
motivations for actually going further were several—firstly, Wan’s results, and
unpublished analogous theorems that we had for automorphic forms on definite
quaternion algebras, both gave a version of the Gouvêa-Mazur conjecture with
α ≤ O(

√
M) rather than α ≤ M , and this led us to believe that perhaps the

Gouvêa-Mazur conjectures were too optimistic. Hence we thought we would
make a concerted effort to search for a counterexample. Secondly, several years
ago we had come up with an (again unpublished) fast algorithm for computing
a matrix representing T2 on Sk(SL2(Z)) and we felt that this would help us
with the project. Thirdly, it seemed that a serious computation would be a way
to get a “feeling” for the Coleman-Mazur eigencurves. Finally, William Stein
has recently written a package that computes spaces of modular forms, and a
serious computation seemed like a good way of testing his programs. We should
remark that Gouvêa also did many computations since [9] was written, and the
reader that wants to see the current status of things is strongly recommended
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to refer to [10] or to [14].
Our extensive numerical calculations did not reveal any counterexamples to

the Gouvêa-Mazur conjecture. On the contrary, to our surprise, they revealed
what seemed to be far more structure. The Gouvêa-Mazur conjectures predict
local constancy of slopes, in some sense, whereas, with the help of the numerical
data, we were able to formulate in many cases a new conjecture, which predicted
all slopes precisely.

Our investigations of the phenomenon of patterns in slopes were inspired
by the aforementioned computations of Emerton, and also by results in Lawren
Smithline’s 1999 UC Berkeley thesis. We are grateful to both Smithline and
Emerton for several helpful remarks. Smithline proves in his thesis that there is
some structure to the set of slopes of weight zero 3-adic overconvergent modular
forms of level 1, and this structure was one of the reasons why we were inspired
to do these computations. We are also grateful to William Stein and Tamzin
Cuming for providing many spare CPU cycles, and to the referee for several
helpful comments.

Although the conjectural formula that is the heart of this paper is of a purely
elementary nature, it seems very complicated to explain. The structure of this
paper is as follows. In the first section we explain what we mean by the notion
of Γ0(N)-regularity above. In the second, we formulate the conjecture. The
third section is an attempt to explain heuristically our motivation behind the
precise details of the conjecture. Finally, the fourth section raises further related
questions. In particular, the finiteness questions 4.4 and 4.5 do not apparently
appear to have been raised before.

Although we shall not mention overconvergent forms in the main body of this
paper, we should perhaps mention that the original reason we were motivated to
do these computations was to try and understand the geometry of the Coleman-
Mazur eigencurves in some specific cases. Closely related to conjectures about
the values of slopes of classical modular forms are analogous conjectures about
the values of slopes of overconvergent forms, as one can see by a simple continuity
argument and the theorem of Coleman that overconvergent forms of small slope
are classical. In fact these conjectures below about slopes of classical forms
could be entirely rephrased in terms of overconvergent forms. On the other
hand, this rephrasing seemed equally complicated, if not more, and so we have
not mentioned it below. However, in the specific case of p = 2 and N = 1,
the author and F. Calegari have managed to come up with a conjecture for
both classical and overconvergent forms that is much simpler to state, and have
furthermore have succeeded in proving it for overconvergent forms of weight 0—
we can prove that the valuation of the nth slope of U2 is 1 + 2v2

(
(3n)!

n!

)
. In

particular, all slopes are positive odd integers, which could perhaps be regarded
as some very weak evidence towards Question 4.2 below. See the forthcoming [3]
for more details.
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1 Γ0(N)-regularity.

Let N be a fixed positive integer and let p be a fixed prime not dividing N .
For k ≥ 2 an even integer, define vk to be the sequence of p-adic valuations
of the eigenvalues of Tp acting on Sk(Γ0(N)), with multiplicities, arranged in
increasing order. For example, if N = 1 and p = 2 then we see from the table
above that v24 = [3, 7], where we use square brackets to denote a sequence.

We firstly remark that there is probably no elementary combinatorial formula
for predicting vk in general. For example, when k = 12 and N = 1 one finds
that Tp acts as a p-adic unit for most primes, but occasionally (for example for
p = 2, 3, 5, 7 and 2411) the eigenvalue of Tp is divisible by p. Our goals are thus
slightly more modest. Define kp = p+3

2 if p > 2, and define k2 = 4.

Question 1.1. Is there an elementary combinatorial recipe which, given vk for
all k ≤ kp, predicts vk for all k ≥ 2?

We have substantial numerical evidence suggesting that the answer to the
question above is “yes”, although we have not really made the question precise.
Indeed, we shall not make this question precise in general, but only in the
case where the prime p is Γ0(N)-regular. We now give a definition of Γ0(N)-
regularity.

Definition 1.2 (Γ0(N)-regularity: p odd). If p > 2 then we say that p is
Γ0(N)-regular if the eigenvalues of Tp acting on Sk(Γ0(N)) are all p-adic units,
for all even integers 2 ≤ k ≤ kp.

If p = 2 then this definition is not a good idea in general, because by Hida
theory we see that the number of unit eigenvalues of Tp at weight 4 is bounded
above by dim(S2(Γ0(2N)))− dim(S2(Γ0(N))), which is almost always less than
dim(S4(Γ0(N))).

Definition 1.3 (Γ0(N)-regularity: p = 2). We say that the prime p = 2 is
Γ0(N)-regular if

1. The eigenvalues of T2 on S2(Γ0(N)) are 2-adic units.

2. There are exactly dim(S2(Γ0(2N)))−dim(S2(Γ0(N))) eigenvalues of T2 on
S4(Γ0(N)) which are 2-adic units, and all the others (if any) have 2-adic
valuation equal to 1.

The reader who would like a uniform definition should perhaps think of the
definition as saying that p is Γ0(N)-regular if the valuations of the eigenvalues
of Tp for k ≤ kp are as small as possible. This definition for p = 2 is a little
ad-hoc, and is based on the fact that a computation in the case of p = 2 and
N = 5 showed that we did not want 2 to be Γ0(5)-regular. The modification
is motivated by the following consequence of (one form of) the Gouvêa-Mazur
conjecture: if p = 2 and all eigenvalues of T2 on S2(Γ0(N)) are units, then there
should be no eigenvalues of T2 on S4(Γ0(N)) with valuation strictly between 0
and 1. This justifies the phrase “as small as possible” above.
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Assume for the rest of this section that p > 3. Then any continuous odd irre-
ducible Galois representation ρ : Gal(Q/Q) → GL2(Fp) which has determinant
equal to an integer power of the cyclotomic character, and which is modular,
has a twist coming from a characteristic zero form of weight at most p+1, level
equal to the conductor of ρ, and trivial character. Furthermore, one can read
off whether the eigenvalue of Tp on such a form is a p-adic unit by the local
behaviour of ρ at p. Details of these results can be found for example in [13]
and [7]. Finally, by the theory of theta cycles, if there is a mod p eigenform of
level N and weight k with p+3

2 < k ≤ p + 1 which is in the kernel of Tp, then
there is another such form of weight p+3− k ≤ p+3

2 . From these facts, one can
easily deduce

Lemma 1.4. p > 3 is Γ0(N)-regular if and only if any irreducible modular
Galois representation ρ : Gal(Q/Q) → GL2(Fp) with conductor dividing N and
determinant a power of the mod p cyclotomic character is necessarily reducible
when restricted to a decomposition group at p.

The restriction to p > 3 is because of technical problems lifting mod p forms
with trivial character to characteristic zero forms with trivial character, and
could perhaps be avoided if we worked with Γ1(N), or with mod p modular
forms.

If one now assumes Serre’s conjecture on modularity of continuous irreducible
odd mod p Galois representations, then one can deduce a purely representation-
theoretic criteria for Γ0(N)-irregularity, because the word “modular” in the
lemma above can then be replaced by “continuous and odd”. This formu-
lation of Γ0(N)-regularity can perhaps be thought of as an analogue to the
representation-theoretic criteria for irregular (in the classical sense) primes—if
a prime is irregular in the classical sense then there is an upper-triangular 2-
dimensional mod p Galois representation which is non-split, unramified away
from p and tamely ramified at p.

The first few SL2(Z)-irregular primes are 59, 79, 107, 131, 139, 151, 173, . . ..

2 The conjecture

Recall that we have fixed N and p, where now p ≥ 2 is back to being an arbitrary
prime not dividing N . Below, we shall give a recipe for constructing sequences
s2, s4, s6, . . .. These sequences depend only on k, p and the dimension of various
space of cusp forms of level N and Np. The main conjecture of this paper is

Conjecture 2.1. Assume that p is Γ0(N)-regular. Then the sequences s2,
s4, . . . of integers are precisely the sequences v2, v4, . . . of p-adic valuations of Tp

acting on Sk(Γ0(N)).

The recipe defining the sk is messy, and it seems to us that its ideal pre-
sentation is as a computer program. The recipe depends on the dimension of
various spaces of cusp forms, sometimes with non-trivial character, and the only
package of which we are currently aware that has these things built in is the
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MAGMA package [1]. We have implemented our conjecture in MAGMA, and
the source is available at the author’s web page [2]. We have also implemented
our conjecture in pari-gp [12], but this was a little messier because we also
had to implement some of the theory of Dirichlet characters, and also routines
for computing dimensions of spaces of cusp forms with non-trivial character.
Again, the source is available at [2]. The reader may well find playing with
these programs a lot more enjoyable than attempting to read the description of
the conjecture below.

Firstly, some notation. A sequence denotes a finite sequence [a1, a2, . . . , an]
of integers. The square brackets are merely notational. If s = [a1, a2, . . . , an] is
a sequence, then we let l(s) := n denote the length of s. We denote the empty
sequence by [ ]. If s is a sequence then we let s[i] denote its ith term. We say that
a sequence s is increasing if s[i] ≤ s[i + 1] for all i with 1 ≤ i < l(s). The union
a∪b of two sequences is the sequence of length l(a)+l(b) defined as the sequence
a followed by the sequence b. Note that this is of course not commutative in
general. If a and b are sequences of the same length, then Min(a, b) denotes the
sequence whose ith term is Min(a[i], b[i]).

For k an integer, write d(k) for the dimension of Sk(Γ0(N)), write dp(k) for
the dimension of Sk(Γ0(Np)), and for ε a Dirichlet character of level p, write
dp,ε(k) for the dimension of Sk(Γ0(N)∩Γ1(p); ε). For n, r ≥ 0 we define κ(n, r)
to be the constant sequence [r, r, . . . , r] of length n. If v is a sequence of length l
and e is an integer, we define v+e to be the sequence [v[1]+e, v[2]+e, . . . , v[l]+e]
and e−v to be the sequence [e−v[l], e−v[l−1], . . . , e−v[1]] (note the reversal of
order). If v is a sequence and 0 ≤ δ ≤ l(v), we define σ(v, δ) to be the truncation
[v[1], v[2], . . . , v[δ]] of v. More generally, if 1 ≤ δ1, δ2 ≤ l(v), we define σ(v, δ1, δ2)
to be [v[δ1], v[δ1 + 1], . . . , v[δ2]], where this is interpreted as the empty sequence
if δ2 < δ1. For α ∈ Q, we write bαc for the largest integer which is at most α.

We begin by defining sequences t2, t4, . . . of integers; note that later on we
will define sk to be tk for k > 2, and hence in particular for k > 2 we are
conjecturing that tk is going to be the sequence of slopes at weight k. We will
define the first few tk “by hand”, and then proceed recursively to define tk for
all positive even integers k.

We set t2 = κ(dp(2)−d(2), 0). If p = 2 then we set t4 = t2∪κ(d(4)− l(t2), 1)
and define kmin = 6. If p > 2 then for 4 ≤ k ≤ p + 1 even we set tk = κ(d(k), 0)
and set kmin = p + 3. For p > 2 what we are doing here is assuming that all
slopes are 0 for all weights k ≤ p + 3, and in particular for all k ≤ kp, which is
our Γ0(N)-regularity condition.

Now let us assume that k ≥ kmin is even and that we have defined tl for all
even l < k. We will now define tk. The definition depends on three parameters
a, b and c, defined thus. Let a be the unique element of Z≥1 such that pa <
k − 1 ≤ pa+1. Let b be the unique integer with 1 ≤ b ≤ p − 1 such that
pab < k − 1 ≤ pa(b + 1). Set c = 1 + b (k−2−pab)

pa−1 c. Then 1 ≤ c ≤ p. Also, let m

be the number of cusps on X0(N).
We will firstly define a sequence V which will be the “first few slopes” of

tk. The algorithm used for the definition of V will depend on b and c. More
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precisely, the definition of V will depend on which of the following cases we are
in: b+ c ≤ p−1, b < p−1 < b+ c or b = p−1. Note that if p = 2 then the third
case is the only one that can arise. We will attempt to give some explanation of
what is happening at this point in the algorithm, in particular the motivation
behind the definitions of the ki, in the next section.

Case 1: b + c ≤ p − 1. We set k1 = k − b(p − 1)pa−1 and k2 = k −
(b − 1)(p − 1)pa−1 − 2(b + c − 1)pa−1. We set v1 = tk1 and v2 = tk2 . Define
B = pab + pa−1(c− 1) + 1, set e = k−B and let ε denote χB−1, where χ is any
Dirichlet character of conductor p and order p − 1 (note that p > 2). Finally
set s = 1 + dp,ε(1 + e).

If l(v1) ≥ s − 1 then we set V1 = σ(v1, s − 1). Otherwise we set V1 =
v1 ∪ (e− σ(v2, s− 1− l(v1))). Finally, we set V = V1 ∪ κ(m, e).

Case 2: b < p− 1 < b + c. We set k1 = k − ((b + 1)pa−1(p− 1)) and k2 =
k−pa−1(p−1). We set v1 = tk1 and v2 = tk2 . We define B = (b+1)pa−1(p−1)+1
and set e = k − B. Finally, set s = 1 + dp(1 + e), let s2 = b(s − 1)/2c and let
e2 = be/2c.

If l(v1) ≥ s − 1 then we set V1 = σ(v1, s − 1). If s − 1 ≤ 2l(v1) < 2(s − 1)
then we set V1 = v1 ∪ (e− σ(v1, s− 1− l(v1))). If however 2l(v1) < s− 1 then
define w = σ(v2, l(v1) + 1, s2), and our definition of V1 depends on the parity
of s. If s is even then we set V1 = v1 ∪ w ∪ [e2] ∪ (e − 1 − w) ∪ (e − v1) and if
s is odd then we set V1 = v1 ∪ w ∪ (e − 1 − w) ∪ (e − v1). Note here that [e2]
denotes the sequence with one element, e2.

Finally, if e = 1 then we define V = V1 ∪ κ(m − 1, 1) and otherwise we set
V = V1 ∪ κ(m, e).

Case 3: b = p − 1. This is the only case that occurs when p = 2. It is
similar to case 2 but w is slightly modified. We set k1 = k − pa(p − 1) and
k2 = k − pa−1(p− 1). We set v1 = tk1 and v2 = tk2 . We set B = pa(p− 1) + 1
and e = k − B. Next, set s = 1 + dp(1 + e), set s2 = b(s − 1)/2c and set
e2 = be/2c.

Again, if l(v1) ≥ s− 1 then we set V1 = σ(v1, s− 1), and if s− 1 ≤ 2l(v1) <
2(s−1) then we set V1 = v1∪ (e−σ(v1, s−1− l(v1))). If however 2l(v1) < s−1
then define w0 = σ(v2, l(v1)+1, s2) and set w = Min(w0 +1, κ(l(w0), e2)) (recall
that this minimum is taken pointwise). Now we proceed as in case 2. If s is
even then we set V1 = v1 ∪w ∪ [e2]∪ (e− 1−w)∪ (e− v1), and if s is odd then
we set V1 = v1 ∪ w ∪ (e− 1− w) ∪ (e− v1).

Finally, if e = 1 then we set V = V1 ∪ κ(m − 1, 1) and otherwise we set
V = V1 ∪ κ(m, e).

We are finally ready to define tk. If l(V ) ≥ d(k) then we simply let tk
be σ(V, d(k)). Otherwise, we set k3 = 2B − k, v3 = tk3 , and define tk =
σ(V ∪ (e + v3), d(k)).

This gives us an infinite sequence of sequences t2, t4, . . .. The definition of
sk is now simple: sk = tk if k > 2, and s2 = κ(d(2), 0). The fact that s2 differs
from t2 indicates that perhaps one should work with slopes of Up at level Np
rather than Tp at level N .
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3 Remarks on the conjecture.

Although the conjecture made above has some interesting consequences (see the
next section) and raises some related interesting questions, the author feels that
the precise form of the conjecture itself is deeply unsatisfactory. The conjecture
is basically saying that there is a very precise and unproven structure amongst
slopes, but it seems to us that when this structure is discovered and proved, it
will probably not prove the conjecture as it stands—it is much more likely to
explain how the conjecture should have been formulated. F. Calegari and the
author in fact have a much more readable form of the conjecture in the special
case p = 2 and N = 1, and have proved several cases of it (see [3]).

There was a lot of motivation behind the recipe in the conjecture. The recipe
was formulated by firstly assuming that the Gouvêa-Mazur conjectures were in
fact much too weak, and seeing what kind of consequences this assumption had.
We take the time here to explain a little about the motivation behind the details
that we understand.

Let us consider, for example, the definition of V1 in Case 1. What is going on
is that V1 should in fact be the vector of Up-slopes on S1+e(Γ0(N) ∩ Γ1(p); ε).
The number e is chosen so that e + 1 is congruent to k modulo pa−1. The
power of the Teichmüller character chosen is to ensure that the weight-characters
x 7→ xk and x 7→ x1+eε(x) are in the same component of weight space. Hence
one should expect small slopes in S1+e(Γ0(N)∩Γ1(p); ε) and Sk(Γ0(Np)) to be
close, and we are predicting that many of them coincide. The wp operator will
send a form of slope s in S1+e(Γ0(N) ∩ Γ1(p); ε−1) to a form of slope e − s in
S1+e(Γ0(N) ∩ Γ1(p); ε). So to explain the higher slopes in V1 we should look at
small slopes in S1+e(Γ0(N)∩Γ1(p); ε−1). The weight-character corresponding to
these forms is close to x 7→ xr if r is an integer which is congruent to k +2−2B
modulo (p− 1) and to 1 + e modulo a high power of p. The integer k2 has this
property, because B is congruent to b + c modulo p − 1. This then completely
explains the motivation behind the definition of V1 in case 1.

As another example, we explain the motivation for the final e + v3. Let us
assume that we are in case 3. If f is an eigenform of weight k3 and slope σ
then the Hodge-Tate weights of the associated Galois representation are 0 and
k3 − 1. Tate twisting this representation e times gives a Galois representation
with Hodge-Tate weights e = k − 1 − pa(p − 1) and k3 − 1 + e = pa(p − 1).
Hence p-adically these Hodge-Tate weights are close to k− 1 and 0 respectively,
and the conjecture is predicting that there is a modular Galois representation
which does have Hodge-Tate weights 0 and k− 1 and which is highly congruent
to this Tate twist. The associated modular form will have slope e + σ and
will presumably be highly congruent to the p-adic modular form θef of weight
k3 + 2e = k.

It is a pleasant exercise, if one really wants to understand the nuts and bolts
of the conjecture, to try and explain all the combinatorics involved in this way.
However there is one step that the author cannot explain in this conceptual
manner, and that is the construction of w in the middle of case 3. The fact that
one sometimes has to add precisely 1 to an entry of w0 seems to say geometrically
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that the eigencurve looks less “flat” near a p-newform, but is varying in a very
precise way. What seems to be happening is that families of overconvergent
eigenforms that do not contain any classical p-newforms seem to be a lot flatter
in general than families containing newforms. Here we use the word flat in a
non-technical sense, to mean that the slope tends to vary a lot less as one moves
through the family.

4 Consequences of the conjecture and related
questions

In this last section we raise some consequences and probable consequences of
the conjecture, and the thoughts behind it. We start by emphasizing that we
strongly believe that Γ0(N)-regularity is a red herring, and that there should
be a recipe which gives either the valuations of the eigenvalues of Tp at level N ,
or the slopes of Up at level Np, in all cases. This recipe should take as input the
slopes at weight k ≤ kp, or perhaps the slopes at weight k ≤ p + 1. However,
if p is not Γ0(N)-regular the situation is more complicated. As an example of
why it is more complicated we present the first consequence of our conjecture:

Consequence 4.1. If p is Γ0(N)-regular, and Conjecture 2.1 is true, then the
valuation of any eigenvalue of Tp on Sk(Γ0(N)) is finite, and an integer, for
any k.

Wan has asked whether in the general case the denominators of the valua-
tions are bounded by a constant depending on N and p, but independent of k.
One may ask a stronger question (recall that k2 = 4 and kp = p+3

2 for p > 2;
also that p is prime to N):

Question 4.2. Let M be the lowest common multiple of the denominators of
the slopes of Up on forms of level Np and weight k, with 2 ≤ k ≤ kp. Does the
denominator of any slope at level Np at any weight divide M?

Related to these questions are questions about fields of definitions of modular
forms. Let fk denote the characteristic polynomial of T2 acting on the space
Sk(SL2(Z)). Maeda has conjectured that this polynomial is always irreducible
over Q, and various authors have checked both this statement and the stronger
statement that the Galois group of its splitting field is the full symmetric group.
For example, the author checked this for all k ≤ 2048. On the other hand, if one
looks at the factorization of fk over Q2 for small values of k, one cannot help but
notice that the irreducible factors are always linear or quadratic. This is related
to the fact that our conjectures are frequently forcing slopes to be spread out,
making it more difficult for them to repeat. We remark that the corresponding
extensions of Q2 are sometimes ramified, even though we are conjecturing that
the valuations are always integral. This raises the specific question

Question 4.3. Let f be a normalised eigenform of level 1. Does the extension
of Q2 generated by the coefficients of f always have degree at most 2 over Q2?
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More generally, we have

Question 4.4. Let N be a positive integer, and let p be a prime not dividing N .
Is there a bound B = B(N, p) such that if f is any normalised eigenform of
level N , then the coefficients of f generate an extension of Qp of degree at
most B? Equivalently, is there a subfield F ⊆ Qp, finite over Qp, and depending
only on N and p, such that any normalised eigenform f ∈ Sk(Γ0(N);Qp) has
q-expansion in F [[q]]?

One might even consider the case where p divides N but we have not done
any computations at all in this case.

A remark related to these questions: it is a recent theorem of Kilford
(see [11]) that if f is a normalised eigenform of level Γ1(4) and any odd weight,
the coefficients of f necessarily lie in Q2. This result could have been noticed
over 50 years ago, and the author finds it interesting that it was proved before
it was conjectured. This might reflect on the current ease with which one can
compute spaces of forms, thanks to Stein. Kilford’s proof relies strongly on
Coleman’s theory of overconvergent modular forms, and explicit computations
of matrices related to the Up operator, and will appear in [11]. Similar results
seem to be true for level Γ1(2n) and Kilford has some partial results.

Motivated by the Fontaine-Mazur conjecture, one can move completely away
from the theory of modular forms. If ρ : Gal(Q/Q) → GL2(Qp) is continuous,
irreducible, unramified at a finite set of primes, and crystalline at p, then it has
a conductor N(ρ), which is a positive integer prime to p. As before, let N be
any positive integer and let p be a prime not dividing N .

Question 4.5. Is there a subfield F ⊂ Qp, finite over Qp and depending only on
N and p, such that if ρ : Gal(Q/Q) → GL2(Qp) is irreducible, crystalline at p,
and has conductor N , then the trace of ρ(g) lies in F for all g ∈ Gal(Q/Q)?

One could relax the crystalline condition to a potentially semi-stable one,
and let p divide N , for an even stronger question—here one has to define the
p-part of the conductor of such a representation using Fontaine theory. One
could even ask n-dimensional analogues of this question, but we shall leave this
to the optimistic reader.

We now move onto a rather amusing consequence of Conjecture 2.1. The
dependence of the recipe in the conjecture on N is only via the dimension of
various spaces of cusp forms of level N and Np. There are cases where these
dimensions happen to coincide for different N . For example, dim(Sk(Γ0(6))) =
dim(Sk(Γ0(8))) for all N , as can be seen from classical formulae for these dimen-
sions. In these cases, the recipe might produce the same results for different N .
For example, p = 5 is both Γ0(6)-regular and Γ0(8)-regular, and as a conse-
quence one gets the following rather strange result:

Consequence 4.6. If Conjecture 2.1 is true, then the 5-adic valuations of
the eigenvalues of T5 on Sk(Γ0(6)) coincide, with multiplicities, with the 5-adic
valuations of T5 on Sk(Γ0(8)). Similarly the slopes of U5 on Sk(Γ0(30)) coincide
with the slopes of U5 on Sk(Γ0(40)).
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The author has checked the above consequence in MAGMA for k ≤ 60. The
reader who knows about Coleman’s results and the overconvergent theory will
realise that as another consequence of the conjecture, the overconvergent (finite)
slopes of U5 at tame levels 6 and 8 must coincide for any weight-character in the
closure of Z. This result is surely not explained by a morphism between the two
eigencurves, and the author has no idea of a more conceptual explanation of this
phenomenon. Perhaps it is just a numerical coincidence. Even more unnerving
is that it is very easy to find many more examples where coincidences at small
weight imply equalities at all weights. The author does not know, unfortunately,
of an example where the set of slopes coming from two levels are the same at all
small weights but where p is not regular (regularity in the sense of this paper).

We next raise some combinatorial problems, which can presumably be at-
tacked using only elementary techniques, and are almost certainly accessible.

Question 4.7. Is the conjecture well-defined, in the sense that every time a
sequence is implicitly assumed to have at least a given length, it does have this
length?

Question 4.8. The sequences vk are by definition increasing. Are the sequences
sk produced by the conjecture always increasing?

One baulks at the combinatorics behind these questions, although they are
surely both accessible. We believe that the answers are affirmative, in both
cases, but have only checked the details in the case p = 2 and N = 1.

Question 4.9. Does Conjecture 2.1 imply that if p is Γ0(N)-regular then the
valuation of any eigenvalue of Tp on Sk(Γ0(N)) is at most k−1

p+1?

This phenomenon, that slopes tend to be very small, was explicitly noted
by Gouvêa. The author again convinced himself that the conjecture did indeed
imply that all slopes were at most k−1

3 in the case p = 2 and N = 1.
Gouvêa also considered the following: if one divides the sequence of slopes

of Up at weight k by a factor of k − 1, one gets a sequence of rationals in the
closed interval [0, 1], and this sequence can be thought of as giving a (finite)
probability measure on this closed interval.

Question 4.10. Does Conjecture 2.1 imply that, as k increases, the measures
tend to a limit, and if so then what is this limit?

Numerical experiments with p = 2 and N = 1 suggest to the author that in
this case measures were tending to a limit, which gave the point 1

2 a mass of 1
3 ,

and which distributed the remaining mass of 2
3 uniformly on [0, 1

3 ]∪ [ 23 , 1]. This
points to a natural conjecture in the general case.

There remains the very natural

Question 4.11. Does Conjecture 2.1 imply the Gouvea-Mazur conjectures in
the Γ0(N)-regular case?

Again, the author convinced himself that this was the case when p = 2 and
N = 1. We will not trouble the reader with the excruciating details.
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[10] F. Gouvêa, web page, currently

http://www.colby.edu/personal/f/fqgouvea/)

[11] L. Kilford, PhD, Imperial College London, in preparation.

[12] The Pari computer algebra system, currently available at

http://www.parigp-home.de/.

[13] K. Ribet, Report on mod l representations of Gal(Q/Q), in Motives, Proc.
Symp. Pure Math. 55:2 (1994), 639–676.

[14] W. Stein, web page (currently http://modular.fas.harvard.edu/).

[15] D. Wan, Dimension variation of Classical and p-adic Modular Forms,
Invent. Math. 133 No. 2 (1998), pp. 449–463.

13


